
1.1.1.1.1.1

Phase 1 Enabling Technology

Readiness Assessment

University of Washington ITS4US

Deployment Project

www.its.dot.gov/index.htm

Final Report — May 8, 2023

FHWA-JPO-21-889

Produced by University of Washington ITS4US Deployment Project
U.S. Department of Transportation
Intelligent Transportation Systems Joint Program Office
Federal Highway Administration
Office of the Assistant Secretary for Research and Technology
Federal Transit Administration

Notice

This document is disseminated under the sponsorship of the Department of

Transportation in the interest of information exchange. The United States

Government assumes no liability for its contents or use thereof.

The U.S. Government is not endorsing any manufacturers, products, or services

cited herein and any trade name that may appear in the work has been included

only because it is essential to the contents of the work.

Technical Report Documentation Page

1. Report No.

FHWA-JPO-21-889

2. Government Accession No. 3. Recipient’s Catalog No.

4. Title and Subtitle

Phase 1 Enabling Technology Readiness Assessment—University of Washington ITS4US
Deployment Project

5. Report Date

May 8, 2023

6. Performing Organization Code

N/A

7. Author(s)

Anat Caspi, Director of the Taskar Center for Accessible Technology at University of
Washington, Mark Hallenbeck, Director of the Washington State Transportation Center at
University of Washington;

8. Performing Organization Report No.

9. Performing Organization Name and Address

University of Washington
4333 Brooklyn Ave NE
Box 359472
Seattle, WA 98195-9472

10. Work Unit No. (TRAIS)

11. Contract or Grant No.

693JJ321C000004

12. Sponsoring Agency Name and Address

U.S. Department of Transportation
ITS Joint Program Office
1200 New Jersey Avenue, SE
Washington, DC 20590

13. Type of Report and Period Covered

N/A

14. Sponsoring Agency Code

HOIT-1

15. Supplementary Notes

Kate Hartman, COR

16. Abstract

This report is the initial draft of the Enabling Technology Readiness Assessment for the Transportation Data Equity Initiative, an effort funded by the
Federal Highway Administration’s ITS4US Program. The project, led by the University of Washington’s (UW) Taskar Center for Accessible Technology
and the Washington State Transportation Center, will develop a national pipeline to create, disseminate, and share standardized data about pedestrian
environments, transportation environments, and on-demand transportation services to enable better use, discoverability, and data analytics of these
assets and services. Specifically, the project will release nationally the OpenSidewalks data standard for digitizing pedestrian ways and will extend the
national data standards for on-demand transit services (GTFS-Flex) and for mapping of multilevel transit stations (GTFS-Pathways).

The ETRA describes the underlying technology needs associated with the creation of such an interoperable data environment as planned by the
deployment of the TDEI. The report assesses the technology readiness of the various supporting technologies that will be integrated into the TDEI. It
presents the technology assessment as suggested by the Technology Readiness Level Guidebook, FHWA publication FHWA-HRT-17-047. The
report is intended to help inform end users, developers, agencies, organizations, and staff involved in the system of the planned build-out of the system
and responsiveness of the technology to the user needs and subsequent system requirements.

17. Keywords

ITS4US; Complete Trip; Deployment; ITS; Intelligent
Transportation Systems; Safety Management, Enabling
Technology; Accessibility; Sidewalks; Navigation software; Data
Standards

18. Distribution Statement

N/A

19. Security Classif. (of this report)

N/A

20. Security Classif. (of this page)

N/A

21. No. of Pages

98

22. Price

N/A

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – University of Washington, TDEI | i

Revision History

Name Date Version Summary of

Changes

Approver

Anat Caspi 7 December 2021 1.0 Initial Draft

Anat Caspi 2 February 2022 2.0 Final

Anat Caspi, Mark

Hallenbeck, University of

Washington

8 May 2023 3.0 Revised Final

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

ii | Phase 1 Enabling Technology Readiness Assessment – UW / TDEI

Table of Contents

1 Introduction ... 1

1.1 Intended Audience .. 1

1.2 Project Background ... 2

1.3 Scope ... 3

1.4 Goals and Objectives .. 4

2 Identify Enabling Technologies ... 5

2.1 Technology Readiness Framework ... 5

2.2 Enabling Technologies Inventory ... 6
2.2.1 Microservices Architecture: Enabling Data Collection, Aggregation, Integration and

Transformation .. 10
2.2.2 Message Streaming and Brokering: Enable Integration of the Data Interoperability

Platform .. 28
2.2.3 Application Programming Interfaces and API Layers .. 31
2.2.4 Intermediary API Gateway Layers Help Integrate APIs .. 36

2.3 Integration Architecture ... 40
2.3.1 Component Integration ... 40
2.3.2 Sample Integration and an Image Data-Stream Ingestion Example 41

3 Technology Readiness Level (TRL) ... 51

3.1 TRL Assessment Process .. 51

3.2 Microservice Architecture ... 51
3.2.1 What Questions Remain Gaps in Knowledge for the Team in Implementing and

Deploying This Enabling Technology?.. 51
3.2.2 What Are the Evaluation Steps to Follow for Each Question? .. 52
3.2.3 How Will You Evaluate the ET TRL in Context of the Conditions for Your Project and

Site? ... 53
3.2.4 Which Team Members or Roles Will You Engage in This Investigation?.......................... 54
3.2.5 How Will You Avoid Potential Bias of Your Group, Which Could Influence TRL Results?

 .. 54
3.2.6 How Will You Ensure the Data You Use for the TRL Results Are Valid and Current? 54
3.2.7 Will Your Process Require the Reevaluation of the TRL Results in a Later Time in the

Project to Support Future Phase 2 and 3 Documents? ... 54
3.2.8 TDEI-Developed Microservices ... 57

3.3 Using Event Streaming in the Context of Microservices Architecture .. 59
3.3.1 What Questions Remain Gaps in Knowledge for the Team in Implementing and

Deploying This Enabling Technology?.. 59
3.3.2 What Are the Evaluation Steps to Follow for Each Question? .. 59

Table of Contents

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – University of Washington, TDEI | iii

3.3.3 How Will You Evaluate the ET TRL in the Context of the Conditions for Your Project and

Site? ... 61
3.3.4 Which Team Members or Roles Will You Engage in This Investigation 62
3.3.5 How Will You Avoid Potential Bias of Your Group, Which Could Influence TRL Results?

 .. 62
3.3.6 How Will You Ensure the Data You Use for the TRL Results Are Valid and Current? 62
3.3.7 Will Your Process Require the Reevaluation of the TRL Results in a Later Time in the

Project to Support Future Phase 2 and 3 Documents? ... 62

3.4 Using APIs and API Gateways in the Context of Microservices Architecture 62
3.4.1 What Questions Remain Gaps in Knowledge for the Team in Implementing and

Deploying This Enabling Technology?.. 62
3.4.2 What Are the Evaluation Steps to Follow for Each Question? .. 63
3.4.3 How Will You Evaluate the ET TRL in Context of the Conditions for Your Project and

Site? ... 63
3.4.4 Which Team Members or Roles Will You Engage in This Investigation?.......................... 63
3.4.5 How Will You Evaluate the ET TRL in Context of the Conditions for Your Project and

Site? ... 64
3.4.6 How Will You Avoid Potential Bias of Your Group, Which Could Influence TRL Results?

 .. 64
3.4.7 How Will You Ensure the Data You Use for the TRL Results Are Valid and Current? 64
3.4.8 Will Your Process Require the Reevaluation of the TRL Results in a Later Time in the

Project to Support Future Phase 2 and 3 Documents? ... 64

3.5 TRL Ratings for Inventoried Enabling Technologies .. 65
3.5.1 TRA: Microservice Architecture ... 65
3.5.2 TRA: Using Event Streams in the Context of Microservices Architecture 75
3.5.3 TRA: Using APIs and API Gateway within the Context of Microservices Architecture 79

4 Risk Assessment ... 87

4.1 Assessing Risk .. 87

4.2 Mitigating Risk.. 89

Appendix A. Acronyms.. 93

Appendix B. References ... 95

Table of Contents

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

iv | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

List of Tables

Table 1 Descriptions and requirements of Technology Readiness Levels (TRLs) as depicted in

tables 2 and 3 of the FHWA Technology Readiness Level Guidebook 5
Table 2 Microservices, general traceability ...11
Table 3: Traceability for microservice architecture within the TDEI implementation 14
Table 4: Traceability for specific microservices deployed within the TDEI implementation 18
Table 5 Traceability for use of Event Bus Architecture as the enabling technology to integrate

TDEI microservices, conferring capabilities for the Data Interoperability Platform 31
Table 6 Traceability for use of APIs in microservice implementation ... 32
Table 7 Traceability for governance of TDEI microservice development and operations 35
Table 8 Traceability for adding API Gateway layers to TDEI microservices 38
Table 9 TDEI-specific governance using API Gateways traces back to associated System

Requirements. .. 39
Table 10 Technology readiness assessment (TRA) for 2.2.1 Microservices Architecture: Enabling

Data Collection, Aggregation, Integration and Transformation .. 65
Table 11 Technology readiness assessment (TRA) for 2.2.1 Microservices Architecture: Enabling

Data Collection, Aggregation, Integration and Transformation with APIs and API Gateways . 75
Table 12 Technology readiness assessment (TRA) for 2.2.1 Microservices Architecture: Enabling

Data Collection, Aggregation, Integration and Transformation with APIs and API Gateways . 79
Table 13. Risk assessment for each enabling technology ... 87
Table 14. High-impact risk mitigation plans .. 89

List of Figures

Figure 1 TDEI technology subsystem services express functional divisions of engineered

components in the TDEI data sharing system. The items in the leftmost panel (shown in

green) are not part of the system and are called “inputs” to articulate exemplar data sources

to the system. ... 9
Figure 2 TDEI core functional view of components in the TDEI. ... 15
Figure 3 Component Integration: Showing how microservices, APIs, and event buses interact in

the TDEI. .. 41
Figure 4 Sample architecture describing human-in-the-loop approach to ingesting, creating, and

maintaining sidewalk data in TDEI interoperable data sharing infrastructure 44
Figure 5 Architecture diagram demonstrating a widely used paradigm for API Gateways and APIs

for microservices integration into a complete microservice architecture that promotes cyber

safety and data interoperability. ... 85

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI | 1

1 Introduction

The last two decades have been a time of unprecedented change in how people move through

built spaces. The rise of open, shared transit information, real time data streams, massive digital

cartography platforms, and other transportation data technologies have changed the way we think

about the built environment, transport, and mobility data. The components of these new mobility

data environments, the focus of this document, represent an exciting future. Most acutely, new,

and disruptive transport will result in profound changes in transportation data. There are

implications for jobs, accessibility, sustainability, resilience, social equity, and the environment.

There are opportunities to shape advances in transportation data infrastructure to improve streets

and better connect people; to reshape cities and improve the social and physical health of

communities. There are opportunities to reduce pedestrian collisions and improve access to

community settings and social services for those who need it most. There is also the potential to

connect people to jobs and change the way cities organize space, prioritize resource allocation,

and optimize trips. Yet these opportunities also present challenges. The ones addressed in this

document are data infrastructure design challenges that are presented by this opportunity to

invent the information exchange architecture for this new mobility.

Smarter transportation may not always translate into greater sustainability, access, or equity.

There is a risk that leaders from the public and private sector will select data infrastructures that

may not have the interoperability, scale, and extensibility necessary to address the full diversity of

travel needs represented by the population they serve, or to be responsive to ever changing

environments they monitor. The intent of the Transportation Data Equity Initiative (TDEI) is to

collaboratively work with diverse stakeholders to achieve the full benefits of new technology, by

applying strong design thinking to the creation of this data infrastructure.

A primary objective of the -ITS4US Deployment program is to deploy new and innovative mobility

solutions to help underserved populations perform a complete trip. Mobility innovation is a space

where the design and policy decisions that planners, engineers, and policymakers make now will

definitively frame the future. In the case of the TDEI, we are concerned about the data design and

data policy that will machinate this future. This document is meant to identify and assess the

maturation of the enabling technologies used to create an integrated solution in the deployment of

an open, shared, interoperable data infrastructure. One of the most important factors in our

decision processes will be partnership, and we hope that through our ongoing work with the TDEI

project partners and collaborators, we will achieve promising technology outcomes and useful

data infrastructures.

1.1 Intended Audience

As discussed, huge modal shifts are now being realized by some travelers mainly through new

data-driven technologies that are offering some populations a high level of flexibility and

convenience in multimodal travel. The TDEI project arose from the recognition that these

changes in personal mobility markets have shifted the roles of public authorities as data

stewards. Public authorities are moving beyond their conventional role as infrastructure providers

1. Introduction

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

2 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

by enabling and promoting alternative mobility services and the data infrastructure to support the

integrated, seamless use of all modalities. Public authorities and public transport companies are

increasingly using the services of new data enterprises and new data platforms to reduce the

need for costly investments in new transport infrastructure, equipment, and operation systems,

but such adoption should be cautious and deliberate lest it leave some transportation consumers

behind. To say “subpopulations are being left behind by data infrastructure” means that some

populations may remain unseen (or unrepresented) by the data systems, or that data attributes

that some populations are concerned about may be unreported or underreported through those

data systems, or that certain types of data or analyses those specific subpopulations care about

remain completely unsupported by the new mobility applications that consume these publicly

available data.

The intended audience for this document includes the data providers, data publishers, data policy

makers, data infrastructure decision makers, application developers and the travelers who require

seamless access to discover, use and evaluate travel options. While not all the technology

components discussed herein would be of equal interest to all the named stakeholder groups, the

text is intended to be understood by all.

1.2 Project Background

In late 2019, the United States Department of Transportation (U.S. DOT) launched a new

department-wide initiative. This initiative, referred to as the Complete Trip initiative, aimed to

expand access to transportation for people with disabilities, older adults, and individuals of low

income. This initiative recognized that all Americans need access to high-quality, affordable, safe,

frequent, and accessible transportation options to access employment opportunities, educational

opportunities, healthcare services, and other activities, but that some groups do not receive the

same quality of service. To support these underrepresented groups, U.S. DOT aimed to increase

its investments in innovations that enhance access and mobility for all travelers, including, but not

limited to, the following user groups: people with disabilities, older adults, low-income earners,

rural residents, veterans, and those with limited English proficiency (LEP) (henceforth referred to

as “underserved travelers”).

In support of this initiative, the Federal Highway Administration created a Broad Area

Announcement opportunity, (BAA) #693JJ3-20-BAA-0004, “Complete Trip - ITS4US

Deployment.” The University of Washington (UW) submitted one of five projects selected for

funding under this BAA, “Complete Trips Empowered by Data Standards: Accessible Mapping

Standards and Data Collaboration Drive Accessible Multimodal Mobility” (referred to as the

“Transportation Data Equity Initiative, TDEI, or the UW ITS4US Project”). This deployment is one

of the Phase 1 Complete Trip – ITS4US Deployment Program projects selected to showcase

innovative business partnerships, technologies, and practices that promote independent mobility

for all travelers regardless of location, income, or disability.

The UW ITS4US Deployment Project aims to create the foundational data tools necessary for

both public and private entities to collect, share, manage, and use transportation data that provide

equitable outcomes to all travelers. At its core, the project is about creating the foundational

requirements for interoperable transportation data sharing that fulfills the informational needs of

all travelers, allowing them to discover and use diverse travel options that meet their specific

needs. The UW ITS4US project itself consists of multiple parts.

1. Introduction

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 3

First, it includes work with three existing standards committees to extend and update existing,

early-stage international data standards: OpenSidewalks, GTFS-Flex, and GTFS-Pathways.

These three data standards enable the consistent collection and reporting of data that provide the

underlying information needed by the currently underserved target populations— people with

disabilities, older adults, and individuals with low income—to efficiently travel.

Second, it is developing a series of tools that help agencies, jurisdictions, and other stakeholders

collect the data that can be stored with these refined data standards. These tools are needed to

lower the cost and improve the quality and consistency of those data collection efforts to increase

the availability of the data.

Third, it is developing tools, policies, and procedures that allow sharing and governance of the

collected data. The tasks performed will enable effective and efficient vetting, aggregation,

management, and fusion of the data that participating agencies, jurisdictions, and other

stakeholders collect. This portion of the project will also include tasks required to enable and

manage the sharing of those data with application developers that write software to deliver

requested travel information.

Fourth, it is developing a data repository to contain the data to be shared within the six counties

that represent the geographic boundaries for this ITS4US project. The data repository will be

developed to illustrate how these data can be collected, stored, governed, updated, and

maintained over time and then served upon request to application developers.

Finally, the project is developing three example applications that use the collected data. The three

applications are intended to demonstrate three very different uses of the data that are made

available to application developers because of the other four aspects of this project. Those data

can be used to fulfill a variety of information needs, and those needs can be met through an

almost infinite number of applications. The three applications deployed as part of this project are

meant to show other application developers how the newly available data can be obtained and

delivered.

1.3 Scope

The aim of this document is to set the context of the future technology innovation work performed

by the Transportation Data Equity Initiative, the UW deployment project for ITS4US. The

document first lays out the necessary knowledge and our working assumptions about the

technology requirements and discusses the manifestations of these requirements in enabling

technologies. The document relies on the needs analysis of the core stakeholder communities,

reviewed in detail in the Concept of Operations (ConOps)1 document, and subsequently

expressed as system requirements in the System Requirements Specification (SyRS)2 , to offer a

1 UW ITS4US Concept of Operations. FHWA-JPO-21-861 https://rosap.ntl.bts.gov/view/dot/58675

2 UW ITS4US System Requirements Specification. FHWA-JPO-21-884

https://rosap.ntl.bts.gov/view/dot/60129

https://rosap.ntl.bts.gov/view/dot/58675

1. Introduction

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

4 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

top-level view of the possible technologies that will be used in the implementation of the work

packages of this deployment project.

From the needs analysis, we identify the specific technology areas emanating from the service

requirements identified in the SyRS document. Note that this document does not aim to provide a

complete analysis of the needs or requirements. Also, it does not provide a technology solution of

a service specification. These latter aspects will be addressed by other deliverables.

1.4 Goals and Objectives

Our goal is to define, design and prototype data services to support the data lifecycle for data

types that are currently missing but are needed to support travelers with disabilities find the

information they need. Our initial approach has been to identify the gaps of data services to

support the UW ITS4US project for different communities and define a first set of requirements

from this gap analysis. In addition to creating equitable data schemas and supporting the data

lifecycle for these data, the approach must avoid being biased toward existing communities or

towards specifically existing services. There is a need for extensible, scalable, interoperable data

approaches that will address the various stakeholder communities’ needs as new modes of travel

and new data types are added to the marketplace.

We approach this problem from a generic standpoint, making as few assumptions as we could to

satisfy the needs of most individual transit agencies, civic organizations, and individual citizens

eager to make use of the data and subsequent data services. The ConOps and SyRS documents

offer first steps in the analysis, defining the generic data lifecycle requirements for each of the

communities with the support of existing defined use-cases. In this document we break down

these activities further to reformulate their descriptions to express the requirements in terms of

the way in which they require technology development or extensions of existing technology

products or services. The result of this work is described in the next sections and evaluated for

technological readiness. Documenting the maturity of the technologies will enable others to build

upon the investments made in this project to progress toward Complete Trip goals more

effectively in future deployments.

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI | 5

2 Identify Enabling Technologies

2.1 Technology Readiness Framework

Our technology readiness assessment will be based on the guidance provided by the following

document:

• FHWA Technology Readiness Level Guidebook

https://www.fhwa.dot.gov/publications/research/ear/17047/17047.pdf

Specifically, we will use the following descriptions and requirements to assess the technology

readiness at each of 5 levels, as described by the referenced document:

Table 1 Descriptions and requirements of Technology Readiness Levels (TRLs) as

depicted in tables 2 and 3 of the FHWA Technology Readiness Level Guidebook

Process: In the TRL tables, each row assesses the technology under consideration per
a specific Technology Readiness Level. We will specify the TRL Name and Description,
and then state its requirements.

Tech Readiness Level 1 Basic principles and research

• Do basic scientific principles support the concept?

• Has the technology development methodology or approach been developed?

Tech Readiness Level 2 Application formulated

• Are potential system applications identified?

• Are system components and the user interface at least partly described?

• Do preliminary analyses or experiments confirm that the application might meet the
user need?

Tech Readiness Level 3 Proof of concept

• Are system performance metrics established?

• Is system feasibility fully established?

• Do experiments or modeling and simulation validate performance predictions of system
capability?

• Does the technology address a need or introduce an innovation in the field of
transportation?

Tech Readiness Level 4 Components validated in laboratory environment

• Are end-user requirements documented?

• Does a plausible draft integration plan exist, and is component compatibility
demonstrated?

• Were individual components successfully tested in a laboratory environment (a fully
controlled test environment where a limited number of critical functions are tested)?

https://www.fhwa.dot.gov/publications/research/ear/17047/17047.pdf

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

6 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

Process: In the TRL tables, each row assesses the technology under consideration per
a specific Technology Readiness Level. We will specify the TRL Name and Description,
and then state its requirements.

Tech Readiness Level 5 Integrated components demonstrated in a laboratory
environment

• Are external and internal system interfaces documented?

• Are target and minimum operational requirements developed?

• Is component integration demonstrated in a laboratory environment (i.e., fully

controlled setting)?

2.2 Enabling Technologies Inventory

At its core, the Transportation Data Equity Initiative aims to build and support the infrastructure for

securing and sharing accessible transportation data required for all people with a full range of

mobility needs and preferences to make informed decisions about their travel. When

organizations produce data about the travel environments they control, or about the on demand

services they offer, a series of tools will be available for them to share and maintain the data in

such a way that downstream application developers will be able to build software to assist

travelers in transit, inform them about real-time and static information on the ground, perform

personalized route optimization, and manage critical data to make trip planning and rerouting for

the complete trip a seamless experience.

Given the wide range of types of data that will be integrated in one platform, the anticipated

system is more complex than a typical geographical information system (GIS). However, the

various components of GIS will certainly have to factor into the design of this system. Specifically,

the data schema design, workflow, and organization, how the data moves through the system and

how other entities could consume and analyze it will have to be methodically thought out. In this

document, we consider the computing hardware that will support the software produced by our

team, as well as the software products themselves. The artifacts that mobile device end users will

interact with will tie back to architectural workflow and organization, as well as the specifications

of the data and the software.

In this section, we detail the different Data Lifecycle Activities that will be required to completely

satisfy the stakeholder requirements in the services of the TDEI. The Data Lifecycle Processes

that must be addressed by the TDEI include:

a. DATA COLLECTION- Represents the point at which new and/or existing data are

collected or generated.

i. Different methods for entry

ii. Validation/certification tools

b. DATA PROCESSING- Represents the activities associated with the necessary

preparation of various new or existing acquired data inputs.

i. Enrichment

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 7

ii. Inference

iii. Analytics

iv. Synonymous Conflation

v. Non-synonymous Conflation

vi. Data Upstream

c. DATA QUALITY CONTROL- Represents the activities to measure and monitor data

quality to ensure that the data are usable at any stage of the data life cycle.

d. DATA VALIDATION—Represents the activities to assess data upon entrance, offering

a certificate before the data enters the stream, ensuring the data are ingestable.

e. DATA DESCRIPTION- Represents the activities of identifying (e.g., digital object

identifier (DOI)) and documenting the data with extended metadata (that could be

defined with common semantics) to allow for understanding, harvesting, and

consuming the data itself.

f. DATA UPDATE Represents the activities that directly change the content of data

(reformat, add in updated sidewalk information, etc.)

g. DATA EXTENSIBILITY Represents the activities of identifying and documenting new

data attributes or data types to allow for data schema extensions and dynamic

growth.

h. DATA SHARING/DATA PUBLISHING Represents the activities associated with

making community data stores available through web sites, web services, data

catalogues, and so on

i. DATA DISCOVERY Represents the activities involved in finding data based on

metadata and/or provenance information.

j. DATA ANALYSIS Represents the activities associated with the exploration and

interpretation of well-managed, processed data for the purpose of knowledge

discovery.

k. DATA PROVENANCE Represents the activities of documenting the various

operations that occurred on data (data processing, data analysis, data transfer) to

achieve reproducibility and referencing.

l. DATA PERFORMANCE- Represents the activities that involve data access

optimization, as well as other performance issues. To be useful, the data

infrastructure must support incoming and outbound data streams with good

performance. There are multiple application areas (namely data coming from

streams, from sensors and crowdsourcing) and appropriate infrastructure support is

vital to handle these challenges.

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

8 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

m. DATA BACKUP Represents the activities that involve the management of physical

risks to the data throughout the data lifecycle. Routine local backups are critical to

prevent the physical loss of data prior to the final PRESERVATION of the data.

n. DATA STORAGE and LONG-TERM PRESERVATION Represents the activities

associated with preserving data for long-term use, re-use, and accessibility.

Three main system components will be highlighted as we consider three core enabling

technologies that cover the most critical aspects of the TDEI deployment and the Data Lifecycle

Activities. The core technologies TDEI needs to support include the provisioning of the following:

1. Microservices architecture for data collection, aggregation, transformations, and

other lifecycle activities will enable the actions of joining data from multiple sources, in

multiple formats, and performing data aggregations, transformations and integrations to

bring input data into the consistent data schemas promoted by the TDEI.

2. A data architecture enabled by event streams allows interoperable data sharing to

occur based on triggers from events.

3. TDEI APIs will enable data usage and consumption that accommodate different use

cases.

As shown in Figure 1, TDEI technology subsystem services express functional divisions of

engineered components in the TDEI data sharing system. The items in the leftmost panel (shown

in green) are not part of the system and are called “inputs” to articulate exemplars of the different

types of input data that might be the inputs to the data sharing infrastructure. First, some

agencies may contribute data in different formats, some may be GIS data, transportation data, or

other data streams. Second, some data providers may share large data batches that are not

transportation data but imagery data. Third, some data producers may already be furnishing APIs

for downstream consumption that may be integrated into transportation data.

The main activity of provisioning interoperability by the TDEI is found in the panel numbered 2.2.2

“Data Interoperability platform.” However, as the TDEI anticipates some data providers may never

directly adopt the data standards, and others may produce partial streams, this deployment

project intends to offer some data connector and adapter microservices, depicted in the second

panel from the left (2.2.1 Microservices provide adapters or connectors to the TDEI platform).

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI | 9

Figure 1 TDEI technology subsystem services express functional divisions of engineered components in the TDEI data sharing system.

The items in the leftmost panel (shown in green) are not part of the system and are called “inputs” to articulate exemplar data sources

to the system.

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI | 10

Lastly, the TDEI platform will furnish (as shown in the rightmost panel numbered 2.2.3 in Figure 1)

TDEI APIs for data analytics and applications, as well as data processing.

In the following subsections, we first explain the three core enabling technology components:

microservice architecture, event buses for asynchronous communication, and APIs/API layers.

We will cover each of these subsystem functional divisions below, paying attention to the core

requirements derived in the SyRS, and assessing several options for implementation.

For discussion of a typical exemplar of our system, Section 2.3.2 describes the overall integration

of these technologies into the TDEI infrastructure. Additional sections describe some of the

microservices that will be deployed as part of the initial TDEI prototype technology stack. These

will include microservices that are “off the shelf” and almost definitional for this type of

interoperable data sharing. Two such examples are microservices for Messaging, and Identity.

Next, we provide some examples of the microservices we will build out on our own, using

examples from the TDEI Stakeholder needs that may make some of the specific microservices

and tools we build unique and not ‘off the shelf’. We also highlight some areas where it will be

ideal for the TDEI to offload critical parts of microservice applications, which are not part of our

core competency or expertise, externally to a cloud-based microservice. Using out-of-the box

solutions will allow us to quickly implement key functionality. Some of the components that range

from complex to almost impossible to build in-house have various Software as a Service

solutions.

2.2.1 Microservices Architecture: Enabling Data Collection,

Aggregation, Integration and Transformation

The lack of Interoperable transportation data for pedestrian spaces, travel environments and on-

demand travel services present a major challenge in achieving ubiquitous support for complete

trip planning. The plethora of diverse GIS information held in silos by municipalities and transit

agencies, is widening the gap of interoperability. While many organizations are looking for a

standardized solution, conflicting messaging and various systems that are being built concurrently

makes it difficult to expect data producers to immediately adopt the TDEI’s selected data

schemas and provide data in those schemas. This deployment project recognizes a need for an

alternate strategy that will allow data producers to seamlessly contribute data in several prevalent

formats. Our solution is to provide several microservices which can intelligently mediate amongst

a few mainstream GIS systems.

A microservices architecture3,4 is an architectural paradigm in which a software system is built of

small loosely coupled components as opposed to a single large monolithic system, called

3 What is a Microservices Architecture? Google. https://cloud.google.com/learn/what-is-

microservices-architecture

4 Microservice Architecture Style. Microsoft. https://learn.microsoft.com/en-

us/azure/architecture/guide/architecture-styles/microservices

https://cloud.google.com/learn/what-is-microservices-architecture
https://cloud.google.com/learn/what-is-microservices-architecture

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 11

monolithic architecture5. In a microservices architecture, a number of separate microservices are

developed – each microservice has its own code base and potentially its own development team.

The microservices can be managed and deployed independently improving the updatability of the

system by decentralizing software updates – that is, a microservice can be developed and

updated independently of other microservices. The microservices communicate over well-defined

interfaces such as Application Programming Interfaces (APIs) or queue-based paradigms such as

event busses. Each microservice is designed to implement a specific piece of business logic and

in fact, microservices can be implemented in different programming languages and use different

technologies. Thus, microservices each have specific business purposes, function independently,

are developed independently, and communicate using well-defined interfaces. This is in contrast

to traditional monolithic architectures in which the entire system is one code base, written in a

single language, typically lack well-defined interfaces between components, and must be updated

as a whole. The independence of using microservices can improve the agility of development and

management of a software system.

Management and orchestration and API gateways6 are key components of microservice

architectures. Microservice architectures are also most commonly deployed on the cloud. In the

TDEI infrastructure, APIs and API Gateways will take a central role in the maintenance and

sustainability of data interoperability and sharing. Therefore, these core enabling technologies

(API and API Gateway) as a topic will receive separate attention in Section 2.2.3.

• In general, use of microservices traces back to the following system requirements:

Table 2 Microservices, general traceability

SyRS
Section

Requirement
Type Requirement ID Requirement Text

Verification
Method User Need

3.1.3 Data
Collection

F-CO-01 The TDEI system shall be capable of
receiving data from multiple sources.

Demonstration UN-DG2, UN-TS1,
UN-DS8,

3.1.3 Data
Collection

F-CO-01.01 The TDEI system shall be capable of
receiving sidewalk data from data
generators.

Demonstration UN-DG2,

3.1.3 Data
Collection

F-CO-01.02 The TDEI system shall be capable of
receiving external third-party data for
relevant secondary attributes.

Demonstration UN-DU2,

3.1.3 Data
Collection

F-CO-01.03 The TDEI system shall be capable of
receiving fixed-route transit data from
transportation service providers.

Demonstration UN-TS1,

3.1.3 Data
Collection

F-CO-01.04 The TDEI system shall be capable of
receiving on-demand transit data from
transportation service providers.

Demonstration UN-TS1,

5 Microservices vs. Monolithic Architecture. Atlassian.

https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith

6 Microservice Architecture Style. Microsoft. https://learn.microsoft.com/en-

us/azure/architecture/guide/architecture-styles/microservices

https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

12 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

SyRS
Section

Requirement
Type Requirement ID Requirement Text

Verification
Method User Need

3.1.3 Data
Collection

F-CO-01.05 The TDEI system shall be capable of
receiving transit station layout data from
transportation service providers.

Demonstration UN-TS1,

3.1.3 Data
Collection

F-CO-01.06 The TDEI system shall be capable of
receiving data from crowdsourced
applications to enable private citizens to
identify needed local map updates and
vet data submitted by others.

Demonstration UN-DG8, UN-
AD1a, UNAD12,

3.1.3 Data
Collection

F-CO-05 The TDEI system shall provide formal
processes for uploading data and
metadata.

Inspection UN-DG2, UN-TS1,

2.2.1.1 Justification for Choosing Microservices Infrastructure to

Power the TDE

As noted, use of microservices is an architectural style in which a system is developed from many

loosely coupled, independently developed services. The benefits of using microservices

include7,8:

• Each microservice can be developed, deployed, and updated independently of other

microservices, making system updates and the addition of new features easier.

• Each microservice is its own codebase so that different languages can be used for

different system functions. (However, the number of languages used in the system should

be strictly limited for maintainability.)

• Microservices have well-defined communication interfaces so that the internals of each

microservice are encapsulated within that microservice. This means that other

microservices need not be aware of those details. Other microservices need only

understand the communication interfaces.

• Microservices can be independently scaled – that is, if one microservice is particularly

complex or heavily-loaded and needs more resources than other simpler microservices,

that microservice can be provided additional resources. Instead of scaling the entire

(monolith) system, each microservice can be scaled independently.

Microservices also have some disadvantages:

7 What is a Microservices Architecture? Google. https://cloud.google.com/learn/what-is-

microservices-architecture

8 Microservice Architecture Style. Microsoft. https://learn.microsoft.com/en-

us/azure/architecture/guide/architecture-styles/microservices

https://cloud.google.com/learn/what-is-microservices-architecture
https://cloud.google.com/learn/what-is-microservices-architecture

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 13

• Microservices can increase system complexity. Managing the installation and deployment

of many small independent microservices can be more complex than managing a single

large system.

• Debugging and testing can become more complex. While each microservice can be

tested independently, testing and debugging the system as a whole is more complex due

to the asynchronous nature of the microservices and their communication.

In the context of the TDEI, each microservice service will implement a particular capability of the

system itself based on data, technical, or other stakeholder requirements.

For the TDEI project, it has been determined that the flexibility and agility provided by a

microservice architecture outweighs the increase in complexity from using a microservice

architecture. Building a “monolithic” application that addresses the many needs and intertwined

data logic, user interfaces, and other components that the decentralized municipal agencies,

transit organizations and transportation marketplace dictate is not considered to be feasible. In

addition, with a monolithic architecture, there would be limited means of growing the TDEI as

application needs grow. Adding additional features would make the system progressively more

difficult to maintain, deploy, test, and secure. Traditionally, the monolithic style of development

has presented numerous challenges to organizations looking to respond quickly, reliably, and

efficiently to changing application needs.

As an organically growing organization it is important to be wary of long development cycles, and

high infrastructure and licensing costs. In addition, protecting against single points of failure and

enabling scaling are key reasons for the choice of a microservice architecture for the TDEI. These

benefits transcend the difficulty of testing and fixing bugs, addressing vulnerabilities in complex

systems, and challenges integrating new technologies into the mix. In short, legacy architectures

and monolithic applications are not compatible with the on-the-ground situation of the TDEI.

Rather than approach the TDEI’s future growth through refactoring, repurposing or consolidation

of legacy software, the team will be able to add services as use cases arise, to better align the

tools and services the TDEI provides with the current data needs of the TDEI’s stakeholders. To

make the TDEI data infrastructure competitive, open and scalable, the project needs to remain

nimble with its software being extensible and with the ability to evolve quickly. Utilizing a

microservices based architecture helps achieve these goals. Our team thinks about microservices

as individual puzzle pieces that come together to form something useful—like the ideal

interoperable data sharing infrastructure environment. Each microservice can evolve

independently based on the changing needs of the TDEI and the continuous development of the

data schemas. An option would be to utilize outside vendors to fill in the feature and functionality

gaps that are not core to the TDEI, allowing the UW development teams to focus on building

business value.

In summary, the benefits of a microservices based architecture are clear for the TDEI. New

features and functionality are faster to develop, test, and deploy. Services can be deployed

independent of each other, and no single point of failure exists. This will allow for increased

developer productivity and agility so that the demands of different project partners can be met

head on.

Based on these justifications, the use of Microservice architecture in the articulation of the TDEI

additionally traces back to the following system requirements:

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

14 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

Table 3: Traceability for microservice architecture within the TDEI implementation

SyRS
Section

Requirement
Type Requirement ID Requirement Text

Verification
Method User Need

3.1.3 Data
Collection

F-CO-04.03 The data collection tools shall
include technologies that help generate
data that describe on-demand
transportation services to enable
widespread inclusion of those services
by application developers into their trip
planning software.

Demonstration UN-TS2a,

3.1.4 Data
Processing

F-PR-01 The TDEI system shall develop the data
processing components that accept
submitted data.

Demonstration UN-DG2, UN-TS1,

3.1.4 Data
Processing

F-PR-02 The TDEI system shall process the
following data file formats:

Demonstration UN-AD1,

3.1.4 Data
Processing

F-PR-02.01 XML OpenStreetMap (.osm) files Demonstration UN-AD1,

3.1.4 Data
Processing

F-PR-02.02 GTFS Comma Separated Values
(.csv) files

Demonstration UN-AD1,

3.1.4 Data
Processing

F-PR-02.03 JavaScript Object Notation (.json)
files

Demonstration UN-AD1,

3.1.4 Data
Processing

F-PR-03 The TDEI system shall support processes
for:

Demonstration UN-DG8, UN-
DS1a, UN-DS3,
UN-AD12,

3.1.4 Data
Processing

F-PR-03.01 Vetting the data. Demonstration UN-DG8, UN-
AD12,

3.1.4 Data
Processing

F-PR-03.02 Aggregating the data. Demonstration UN-DS3,

3.1.4 Data
Processing

F-PR-03.03 Managing the data. Demonstration UN-DS1a,

3.1.4 Data
Processing

F-PR-03.04 Fusing the data. Demonstration UN-DS3,

2.2.1.2 Key Enabling Technology Components for Microservices:

Containers and Orchestration Managers

The microservices architecture allows the TDEI team to satisfy the Data Lifecycle Requirements

listed above, while still being able to leverage past work and open-source code for some of the

more common data lifecycle functionalities. It is planned for the TDEI to use Docker to build

microservice containers. Each Docker container is generally constrained in functionality, meaning

there will be many of them. The system will then use Kubernetes, an open-source container

orchestration platform, to manage the large number of containers required by the TDEI.

Figure 2 contains panels that functionally serve different purposes in the data lifecycle of the

TDEI. The smaller labeled compartments within each panel describe microservices that can be

decoupled from other activities of the TDEI. Some of the microservices featured in our

architecture will be off the shelf and others will be developed in-house. The panels (from ingestion

to dissemination) listed from left to right include variable inputs, API layer, Load and Ingest, Store

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 15

and Replicate, Analytics and Realtime Processing, API Layer, and Dissemination. The leftmost

panel is a functional representation of variable data inputs to the TDEI (rather than a panel

representing functional units in the data lifecycle of the TDEI data with a containerized

microservices view like the remaining panels). Below we explain how each of the functional

panels, and the microservice containerized within those panels play a role in the Data Lifecycle of

TDEI data.

Figure 2 TDEI core functional view of components in the TDEI.

a. DATA COLLECTION- Represents the point at which new and/or existing data are

collected or generated.

i. Different methods for entry-- TDEI intends to offer connectors for variable data

inputs. The leftmost panel represents those inputs, which may include data

assets such as:

• Street (road) network (this may be from ARNOLD9 or OSM10 road

information) and may be ingested as batch input or as more atomic

modifications represented by subgraphs of the network.

9 ARNOLD – or All Road Network of Linear Referenced Data – is the geospatial roadway

referencing database used for FHWA’s Highway Performance Monitoring System.

10 OSM – OpenStreetMap – is an open-source roadway network and data schema.

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

16 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

• On-demand Transit services described using the GTFS-Flex11 data standard:

snapshots of GTFS-Flex data from transit agencies.

• 3-d Images & LiDAR12: Three-dimensional images / point clouds of transit

facilities provided by operators.

• Pathways Data (GTFS-Pathways13): Stream of GTFS-Pathways data from

transit agencies.

• Street-level 2-d Imagery: Two-dimensional images of the roadways and

footways.

• Crowdsourced Data: Data from human observers. Obtained via mappers

who may be providing on-location data or data inferred from street-level

imagery.

ii. Certification tools—separate microservices will be provided to authenticate data

producers and ensure data is presented in correct digital format. Data is certified

and signed by the certification tool, allowing the producer to provide a batch input

or update to the TDEI (triggering a data ingestion). This is a TDEI-built

microservice and will be containerized in the API Layer.

b. DATA PROCESSING- Represents the activities associated with the necessary

preparation of various new or existing acquired data inputs. All the functionalities

listed below will be implemented via the data integration services (shown in the Load

and Ingest panel). All functionalities listed here are specific to each data schema and

built by the TDEI (not off the shelf). These include data enrichment, computer vision

inference, analytics, synonymous conflation (identifying the same element is provided

twice but with different attributes), non-synonymous conflation (two elements are

different spatially, but are actually referring to the same element in the world)

c. DATA QUALITY CONTROL- Represents the activities to measure and monitor data

quality to ensure that the data are usable at any stage of the data life cycle. TDEI-

specific microservice implementations will be deployed in both the API Layer and the

Integration Server (shown in the Load and Ingest panel) to handle quality control

(QC) activities.

d. DATA VALIDATION—Represents the activities to assess data upon entrance and

offer a deeper analysis about the compatibility of the input data with the existing data

11 GTFS-Flex: General Transit Feed Specification for flexible route services

12 LiDAR: Light Detection and Ranging

13 GTFS-Pathways: General Transit Feed Specification for pathways through transit facilities

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 17

before the data enters the stream. These TDEI-specific microservices go further than

the digital certification above and tries to assess data compatibility and conflicts.

e. DATA DESCRIPTION- Represents the activities of identifying (PID, DOI, ...) and

documenting the data with extended metadata (that could be defined with common

semantics) to allow for understanding, harvesting, and consuming the data itself. This

is a TDEI-specific microservice to digitally sign and enhance the data before

ingestion to provide context to the data and influence downstream confidence

metrics.

f. DATA UPDATE Represents the activities that directly change the content of data

(reformat, add in updated sidewalk information, etc.). This is a microservice suite

which is containerized within the Integration Server (Load and Ingest panel).

g. DATA EXTENSIBILITY Represents the activities of identifying and documenting new

data attributes or data types to allow for data schema extensions and dynamic

growth. This is hybrid microservice that is containerized within the data lake

infrastructure. This would include off-the-shelf technology with customizations.

h. DATA SHARING/DATA PUBLISHING Represents the activities associated with

making community data stores. This would be enabled through the publication of

APIs wrapped through API Gateways (in the API Layer panel on the Dissemination

end) to secure interactions with the data.

i. DATA DISCOVERY Represents the activities involved in finding data based on

metadata and/or provenance information. The TDEI will use microservices and a

database to set up a Registry for applications (upstream as well as downstream

apps) that produce and consume TDEI data. There are several off the shelf

containerized registry services that can be customized towards this purpose. These

microservices will be part of the API Layer panel.

j. DATA ANALYSIS Represents the activities associated with the exploration and

interpretation of well-managed, processed data for the purpose of knowledge

discovery. The TDEI will provide aggregated information about TDEI activities,

content, and data streaming in the data analytics microservices. These will be hybrid

off-the-shelf technologies with customizations and containerized within the Analytics

and Realtime Processing panel.

k. DATA PROVENANCE Represents the activities of documenting the various

operations that occurred on data (data processing, data analysis, data transfer) to

achieve reproducibility and referencing. This is a TDEI-specific microservice to

digitally sign and enhance the data before ingestion to provide context to the data

and influence downstream confidence metrics. Unlike the Data Description above,

the Provenance Microservice interacts and ingests information about the Data

Producer rather than the data itself.

l. DATA PERFORMANCE- Separate TDEI-specific microservices will be deployed for

microservice and TDEI-system monitoring to diagnose and address any activities

involving data access optimization, latency, or other performance degradations. It’s

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

18 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

possible we would be able to incorporate some off the shelf technology in this

container.

m. DATA BACKUP Represents the activities that involve the management of physical

risks to the data throughout the data lifecycle. Routine local backups will be

performed through off-the-shelf services which will likely be part of the database

infrastructure itself (TDEI may not require a separate microservices architecture for

this functionality).

n. DATA STORAGE and LONG-TERM PRESERVATION for long-term use, re-use and

accessibility will be enabled by off-the-shelf services, also part of the database

infrastructure itself (TDEI may not require a separate microservices architecture for

this functionality).

Table 4: Traceability for specific microservices deployed within the TDEI implementation

SyRS
Section

Requirement
Type Requirement ID Requirement Text

Verification
Method User Need

3.5 Information
Management

MAN-04 The TDEI system shall version-control
updates made to the sidewalk graph
network and transit data that is stored
in the data repository.

Demonstration UN-DG4,

3.5 Information
Management

MAN-05 The TDEI system shall only distribute the
latest approved version of sidewalk data
when requested.

Demonstration UN-DG4,

3.5 Information
Management

MAN-06 The TDEI system shall only distribute the
latest approved version of transit data
when requested.

Demonstration UN-DG4,

3.6 System
Operations

3.6.1 System Human
Factors

3.6.1 System Human
Factors

S-HF-01 The TDEI system’s data vetting tools
shall:

Inspection UN-DG8,

3.6.1 System Human
Factors

S-HF-01.01 Have an intuitive user interface. Inspection UN-DG8,

3.6.1 System Human

Factors

S-HF-01.02 Include clearly understood instructions

for vetting data.

Inspection UN-DG8,

3.6.1 System Human
Factors

S-HF-01.03 Only require the minimal number of
entries for user input as required.

Inspection UN-DG8,

3.6.1 System Human
Factors

S-HF-01.04 Allow the reviewer to request changes
to the published data.

Inspection UN-DG8,

3.6.1 System Human
Factors

S-HF-01.05 Allow the originator of the data to
approve or reject changes proposed by
other system participants.

Inspection UN-DG8,

3.6.1 System Human
Factors

S-HF-02 The TDEI system’s demonstration
applications shall:

Inspection UN-TS9, UN-AD7,
UN-DU3, UN-
DU4, UN-DU8,
UN-DU9, UN-
DU10, UN-DU11,

3.6.1 System Human
Factors

S-HF-02.01 Communicate route and navigation
information to an end user in a manner
that is interpreted by the application’s

targeted user group (e.g., visual
information for sighted travelers,
auditory cues for blind travelers).

Inspection UN-DU10,

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 19

SyRS
Section

Requirement
Type Requirement ID Requirement Text

Verification
Method User Need

3.6.1 System Human
Factors

S-HF-02.02 Interface with an end user using intuitive
communication methods (e.g., haptic
feedback, text-to-speech, etc.) for
providing information, based on that
application’s target user group.

Inspection UN-DU3, UN-
DU8, UN-DU10,

3.6.1 System Human
Factors

S-HF-02.03 Have intuitive inputs (for origin,
destination, trip-specific travel
preferences) and instructions for path
routing applications.

Inspection UN-DU4, UN-
DU9, UN-DU11,

3.6.1 System Human
Factors

S-HF-02.04 Provide intuitive explanations of local
environmental attributes for
spontaneous travel information
applications.

Inspection UN-DU3, UN-
DU8,

3.6.1 System Human
Factors

S-HF-02.05 Provide intuitive explanations of local
built environment attributes for digital
twin applications.

Inspection UN-DU3, UN-
DU8,

3.6.1 System Human
Factors

S-HF-02.06 Provide users with the ability to provide
input or corrections to sidewalk data.

Inspection UN-TS9, UN-AD7,

3.6.1 System Human
Factors

S-HF-02.07 Provide users with the ability to provide
input or corrections to transit data.

Inspection UN-TS9, UN-AD7,

3.6.2 System
Maintainability

3.6.2 System
Maintainability

S-MN-01 The TDEI system and associated tools
shall have a defined preventative
maintenance program to check for
issues.

Inspection UN-DS1a, UN-
DS2,

3.6.2 System
Maintainability

S-MN-02 The TDEI system's demonstration
applications should conduct regular
preventative maintenance to detect and
resolve any issues.

Demonstration UN-DS2,

3.6.2 System
Maintainability

S-MN-03 The TDEI system's demonstration
applications should have a mechanism
for user reporting of application errors.

Inspection UN-DU11,

3.6.2 System
Maintainability

S-MN-04 The TDEI system shall have a
maintenance log to identify when issues
are reported and when they are
corrected.

Demonstration UN-DS1a, UN-
DS2,

3.6.3 System
Reliability

3.6.3 System
Reliability

S-RL-01 The TDEI system shall operate in the
normal mode of operation to be
considered fully operational.

Demonstration UN-DU4,

3.6.3 System
Reliability

S-RL-02 The TDEI system shall automatically
notify relevant maintenance staff in the
event that the mode of operation is in
one of the following states:

Demonstration UN-DU4,

3.6.3 System
Reliability

S-RL-02.01 Disrupted. Demonstration UN-DU4,

3.6.3 System
Reliability

S-RL-02.02 Degraded. Demonstration UN-DU4,

3.6.3 System
Reliability

S-RL-02.03 Failed. Demonstration UN-DU4,

3.7 Policy and
Regulation

3.7 Policy and
Regulation

POL-01 The TDEI system shall include policies
that allow sharing of the collected data.

Inspection UN-DS1a,

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

20 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

SyRS
Section

Requirement
Type Requirement ID Requirement Text

Verification
Method User Need

3.7 Policy and
Regulation

POL-02 The TDEI system shall publish route
information that is understood by the
user to be "for information only", with
no guarantee or expectation that that
the supporting data is accurate.

Inspection UN-DU2, UN-
DU8, UN-DU9,

3.7 Policy and
Regulation

POL-03 Any PII data collected by a
demonstration application shall not be
shared with the data repository.

Demonstration UN-AD13,

3.8 System
Lifecycle
Sustainment

3.8 System
Lifecycle
Sustainment

LIF-01 The TDEI system and associated tools
shall have the capability to remain
functional during the duration of the
ITS4US project.

Inspection UN-DG2, UN-TS5,
UN-AD12,

3.8 System
Lifecycle
Sustainment

LIF-02 The TDEI system and associated tools
shall not be restricted from being
adopted and incorporated into another
data service provider’s program.

Inspection UN-DU5,

3.8 System
Lifecycle
Sustainment

LIF-03 The TDEI system shall be capable of
accommodating updated data flows as
data schemas or standards change.

Test UN-DG3, UN-
DG5, UN-TS5,

3.1.3 Data
Collection

F-CO-02 The built environment features received
by the TDEI system shall adhere to the
following:

Demonstration UN-DG1, UN-
AD10a, UN-DU8,

3.1.3 Data
Collection

F-CO-02.01 The built environment features shall be
tagged correctly in the data schema.

Demonstration UN-AD10a,

3.1.3 Data
Collection

F-CO-02.02 The built environment features shall be
able to support nongraphic
representation.

Demonstration UN-DG1,

3.1.3 Data
Collection

F-CO-02.03 The built environment features shall be
intuitive so that digital device end users
can indicate their preferences.

Demonstration UN-DU8,

3.1.3 Data
Collection

F-CO-03 The TDEI system shall provide data
translation tools.

Demonstration UN-DG1, UN-TS1,

3.1.3 Data
Collection

F-CO-03.01 The TDEI system shall provide tools for
sidewalk data producers to translate
existing sidewalk data into the
OpenSidewalks data format.

Demonstration UN-DG1,

3.1.3 Data
Collection

F-CO-03.02 The TDEI system shall provide tools for
transit data producers to translate
existing fixed-route data into the GTFS
data format and associated extensions.

Demonstration UN-TS1, UN-TS6,

3.1.3 Data
Collection

F-CO-03.03 The TDEI system shall provide tools for
transit data producers to translate
existing on-demand data into the GTFS
data format and associated extensions.

Demonstration UN-TS1,

3.1.3 Data
Collection

F-CO-03.04 The TDEI system shall provide tools for
transit data producers to translate
existing transit station data into the
GTFS data format and associated
extensions.

Demonstration UN-TS1,

3.1.3 Data
Collection

F-CO-04 The TDEI system shall provide data
collection tools.

Demonstration UN-DG1, UN-
DG3, UN-TS2a,

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 21

SyRS
Section

Requirement
Type Requirement ID Requirement Text

Verification
Method User Need

3.1.3 Data
Collection

F-CO-04.01 The data collection tools shall convert
data into compatible or conflatable to
the refined data standards for
OpenSidewalks, GTFS data format or,
where applicable, a comparable
extension.

Demonstration UN-DG3, UN-
AD1b, UN-AD5,

3.1.3 Data
Collection

F-CO-04.02 The data collection tools shall include
automated sidewalk data collection
technologies (e.g., advanced analytics
used by mapping technology companies)
to populate sidewalk databases.

Demonstration UN-DG1,

3.1.4 Data
Processing

F-PR-03 The TDEI system shall support processes
for:

Demonstration UN-DG8, UN-
DS1a, UN-DS3,
UN-AD12,

3.1.4 Data
Processing

F-PR-03.01 Vetting the data. Demonstration UN-DG8, UN-
AD12,

3.1.4 Data
Processing

F-PR-03.02 Aggregating the data. Demonstration UN-DS3,

3.1.4 Data
Processing

F-PR-03.03 Managing the data. Demonstration UN-DS1a,

3.1.4 Data
Processing

F-PR-03.04 Fusing the data. Demonstration UN-DS3,

3.1.4 Data

Processing

F-PR-04 The TDEI system shall facilitate the

processing of data into routable
pathways networks.

Demonstration UN-DG1, UN-DS6,

UN-DS6a,

3.1.4 Data
Processing

F-PR-04.01 The routable pathway networks shall
describe the path infrastructure in
objective detail.

Demonstration UN-DG1,

3.1.4 Data
Processing

F-PR-04.02 The routable pathway networks shall
include pathway locations.

Demonstration UN-DG1,

3.1.4 Data
Processing

F-PR-04.03 The routable pathway networks shall
include pathway connectivity.

Demonstration UN-DG1,

3.1.4 Data
Processing

F-PR-04.04 The routable pathway networks shall
include pathway features.

Demonstration UN-DG1,

3.1.4 Data
Processing

F-PR-04.05 The routable pathway networks shall
include pathway characteristics.

Demonstration UN-DG1,

3.1.4 Data
Processing

F-PR-04.06 The routable pathway networks shall
include connectivity of features across
different levels of transit stations.

Demonstration UN-DS6,

3.1.4 Data
Processing

F-PR-04.07 The routable pathway networks shall
ensure that data linkages exist when
different transit agencies share a
physical transit stop.

Demonstration UN-DS6a,

3.1.4 Data
Processing

F-PR-04.08 The TDEI system shall augment relevant
links where connectivity exists.

Demonstration UN-DG1,

3.1.5 Data Quality
Control

3.1.5 Data Quality
Control

F-QC-01 The TDEI system shall require a data
vetting process for all data before they
are deposited into the core data
repository to identify invalid data that
have been reported.

Demonstration UN-DG8,

3.1.5 Data Quality
Control

F-QC-02 The TDEI system shall provide access to
data vetting tools.

Demonstration UN-DG8, UN-
AD11,

3.1.5 Data Quality
Control

F-QC-02.01 The data vetting tools shall confirm
whether the data conform to standards.

Demonstration UN-DG8,

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

22 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

SyRS
Section

Requirement
Type Requirement ID Requirement Text

Verification
Method User Need

3.1.5 Data Quality
Control

F-QC-02.02 The data vetting tools shall confirm
whether the data are of sufficient
accuracy.

Demonstration UN-DG8,

3.1.5 Data Quality
Control

F-QC-02.03 The data vetting tools shall confirm
whether the data are of consistent
quality.

Demonstration UN-DG8,

3.1.5 Data Quality
Control

F-QC-02.04 The data vetting tools shall describe
when data are missing.

Demonstration UN-DG8,

3.1.5 Data Quality
Control

F-QC-02.05 The data vetting tools shall support
automated data vetting activities (e.g.,
automated data review to check for data
format and permissible data).

Demonstration UN-DG8,

3.1.5 Data Quality
Control

F-QC-02.06 The data vetting tools shall support
manual data vetting activities (e.g.,
owner/hired consultant review,
community/organization reviews,
traveler feedback).

Demonstration UN-DG8,

3.1.5 Data Quality
Control

F-QC-02.07 The data vetting tools shall generate a
degree of confidence associated with
the data being published.

Demonstration UN-AD11,

3.1.5 Data Quality
Control

F-QC-03 The TDEI system shall include the
development of validation toolsets for
assembling sidewalk and transit
environment data from multiple

providers.

Demonstration UN-DG7, UN-
TS2a,

3.1.6 Data Storage

3.1.6 Data Storage F-ST-01 The TDEI system shall include the
creation of the centralized data
repositories.

Inspection UN-AD9,

3.1.6 Data Storage F-ST-02 The TDEI system shall include the
operation of the centralized data
repositories.

Inspection UN-AD9,

3.1.6 Data Storage F-ST-03 The TDEI system shall include the
maintenance of the centralized data
repositories.

Inspection UN-AD9,

3.1.6 Data Storage F-ST-04 The TDEI system shall transmit approved
data to centralized data repositories.

Demonstration UN-AD12,

3.1.6 Data Storage F-ST-05 The data repository shall include these
types of data:

Demonstration UN-DS4, UN-AD4,
UN-AD6, UN-
AD8, UN-AD9,
UN-DU3, UN-
DU7,

3.1.6 Data Storage F-ST-05.01 Fixed-route transit data. Demonstration UN-AD9,

3.1.6 Data Storage F-ST-05.02 On-demand transit data. Demonstration UN-AD4,

3.1.6 Data Storage F-ST-05.03 Transit station data. Demonstration UN-DS4,

3.1.6 Data Storage F-ST-05.04 Graphed sidewalk network data. Demonstration UN-AD8,

3.1.6 Data Storage F-ST-05.05 Mode transfer options. Demonstration UN-AD4, UN-
DU7,

3.1.6 Data Storage F-ST-05.06 Travel environments that connect mode
transfers or trip segments.

Demonstration UN-AD6, UN-
DU7,

3.1.6 Data Storage F-ST-05.07 First- and last-mile options. Demonstration UN-DU3,

3.1.7 Data Update

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 23

SyRS
Section

Requirement
Type Requirement ID Requirement Text

Verification
Method User Need

3.1.7 Data Update F-UP-01 The data repository shall support
continuous updates.

Demonstration UN-DG4,

3.1.8 Data
Sharing/Data
Publishing

3.1.8 Data
Sharing/Data
Publishing

F-SH-01 The TDEI system shall include data
provisioning services that distribute
data-on-demand for use in a variety of
applications.

Demonstration UN-TS1, UN-
AD10, UN-DU5,
UN-DS5,

3.1.8 Data
Sharing/Data
Publishing

F-SH-01.01 Data that is shared through the TDEI
system shall be published on a web
service, either open to the public or
through a requested API service.

Demonstration UN-TS1,

3.1.8 Data
Sharing/Data
Publishing

F-SH-01.02 Data that is shared through the TDEI
system shall be accessible for different
geographic locations.

Demonstration UN-AD10, UN-
DU5, UN-DS5,

3.1.8 Data
Sharing/Data
Publishing

F-SH-02 The TDEI system shall support
interoperable sharing.

Demonstration UN-DS2, UN-DS4,

3.1.8 Data
Sharing/Data
Publishing

F-SH-03 The TDEI system shall support two-
directional communication channels
between the central database and the
organizations that “own” the facility or
service being described with data.

Demonstration UN-DS8,

3.1.9 Data Discovery

3.1.9 Data Discovery F-DI-01 The TDEI system shall use public-facing
APIs to exchange data with application
developers.

Demonstration UN-AD1,

3.1.9 Data Discovery F-DI-02 The OpenSidewalks data service shall
perform the following functionality:

Demonstration UN-AD10a,

3.1.9 Data Discovery F-DI-02.01 Receive the request from the application
through its secure API.

Demonstration UN-AD10a,

3.1.9 Data Discovery F-DI-02.02 Verify via the application’s descriptive
metadata.

Demonstration UN-AD10a,

3.1.9 Data Discovery F-DI-02.03 Request/query all relevant data from the
data repository.

Demonstration UN-AD10a,

3.1.9 Data Discovery F-DI-02.04 Send all relevant data to the application
that made the original request.

Demonstration UN-AD10a,

3.1.9 Data Discovery F-DI-03 The GTFS data service shall perform the
following functionality:

Demonstration UN-AD10b,

3.1.9 Data Discovery F-DI-03.01 Receive the request from the application
through its secure API.

Demonstration UN-AD10b,

3.1.9 Data Discovery F-DI-03.02 Verify via the application’s descriptive
metadata.

Demonstration UN-AD10b,

3.1.9 Data Discovery F-DI-03.03 Request/query all relevant data from the
data repository.

Demonstration UN-AD10b,

3.1.9 Data Discovery F-DI-03.04 Send all relevant data to the application
that made the original request.

Demonstration UN-AD10b,

3.1.10 Data Analysis

3.1.11 Data
Dissemination

3.1.11 Data
Dissemination

F-DS-01 The demonstration applications shall
utilize the data returned by the TDEI
data services to:

Demonstration UN-DU9,

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

24 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

SyRS
Section

Requirement
Type Requirement ID Requirement Text

Verification
Method User Need

3.1.11 Data
Dissemination

F-DS-01.01 Identify paths using the most up-to-date
sidewalk and/or transit data (including
any paths that involve a sidewalk path
option or transit option, if requested or
available).

Demonstration UN-DU9,

3.1.11 Data
Dissemination

F-DS-01.02 Screen those paths based on the user’s
trip-specific travel preferences.

Demonstration UN-DU9,

3.1.11 Data
Dissemination

F-DS-01.03 Provide one or more recommended
routes, when such a route exists, to the
end user.

Demonstration UN-DU9,

3.1.11 Data
Dissemination

F-DS-02 The TDEI system shall support the
development of tools to make informed,
customized travel decisions.

Demonstration UN-DU9,

3.1.11 Data
Dissemination

F-DS-02.01 The TDEI system shall utilize mobile
applications to demonstrate the system
by providing a sidewalk route based on
user-defined travel preferences.

Demonstration UN-DU9,

3.1.11 Data
Dissemination

F-DS-02.02 The TDEI system shall utilize mobile
applications to demonstrate the system
by providing paths through transit
stations based on user-defined travel
preferences.

Demonstration UN-DU9,

3.1.11 Data
Dissemination

F-DS-02.03 The TDEI system shall utilize mobile
applications to demonstrate the system

by providing on-demand transit options
based on user-defined travel
preferences.

Demonstration UN-DU9,

3.1.11 Data
Dissemination

F-DS-02.04 The TDEI system shall utilize mobile
applications to demonstrate the system
providing data that supports
spontaneous navigation of an end user’s
local environment.

Demonstration UN-DU9,

3.1.11 Data
Dissemination

F-DS-03 The TDEI system's demonstration
applications shall use intuitive interfaces
that minimizes confusion for targeted
user groups.

Demonstration UN-DU2, UN-
DU4, UN-DU5,

3.1.11 Data
Dissemination

F-DS-03.01 The TDEI system's demonstration
applications shall help the traveler
identify when errors have occurred.

Demonstration UN-DU2,

3.1.11 Data
Dissemination

F-DS-03.02 The TDEI system's demonstration
applications shall provide easily
accessed “help” functions that allow
users to quickly obtain information
about how to safely navigate from their
current location.

Demonstration UN-DU2,

3.1.11 Data
Dissemination

F-DS-04 The TDEI system's demonstration
applications shall be designed to
continue operations despite missing
data.

Demonstration UN-AD11,

3.1.11 Data
Dissemination

F-DS-05 The TDEI system's demonstration
applications shall support the delivery of
information to users in different formats
(audio, text, tactile displays) based on
the intended audience of the
demonstration application.

Demonstration UN-TS5b,

3.1.11 Data
Dissemination

F-DS-06 The TDEI system's demonstration
applications shall provide information
regarding transit service capabilities to

Demonstration UN-DU2,

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 25

SyRS
Section

Requirement
Type Requirement ID Requirement Text

Verification
Method User Need

help travelers avoid potential hazardous
outcomes.

3.1.11 Data
Dissemination

F-DS-07 The TDEI system's demonstration
applications shall provide insight on
areas where data quality is reported to
be poor to help travelers make informed
decisions.

Demonstration UN-DU8,

3.1.11 Data
Dissemination

F-DS-08 The TDEI system's demonstration
applications shall issue low-power
warnings within the application.

Demonstration UN-DU2,

3.1.11 Data
Dissemination

F-DS-09 The TDEI system shall safeguard PII data
deemed necessary for operation.

Inspection UN-AD13, UN-
DU1,

3.1.11 Data
Dissemination

F-DS-10 The TDEI system shall permit approved
third-party mobile applications to utilize
sidewalk or transit data for other routing
and navigation purposes.

Demonstration UN-AD3,

3.1.12 Data
Provenance

3.1.12 Data
Provenance

F-PV-01 Changes approved and committed to
the data repository shall document and
timestamp a new version.

Demonstration UN-DG4, UN-
AD1a,

3.1.12 Data
Provenance

F-PV-02 Change records shall be traceable to the
agencies/organizations that perform
data vetting.

Demonstration UN-AD1a,

3.1.12 Data
Provenance

F-PV-03 Change records shall be traceable to the
agencies/organizations that respond to
data vetting reports.

Demonstration UN-AD1a,

3.1.12 Data
Provenance

F-PV-04 Date stamps shall be present to ensure
that the data are valid for specific dates
and are not used past valid time periods.

Demonstration UN-AD1a,

3.1.12 Data
Provenance

F-PV-05 Two-way information sharing shall
reference to the originator of the data.

Demonstration UN-AD1a,

3.1.13 Data
Performance

3.1.14 Data Backup

3.1.14 Data Backup F-BA-01 Data stored in the data repository shall
be backed up periodically so that in the
event of a system issue (e.g., data loss,
data corruption, application outage),
failover will occur, and the data
repository will remain available.

Inspection UN-AD9,

3.1.14 Data Backup F-BA-01.01 Backup methods used shall meet USDOT
requirements for records retention.

Inspection UN-AD9,

3.1.14 Data Backup F-BA-01.02 Backup methods shall archive, at a
minimum, each data contribution that is
provided by a data contributor.

Inspection UN-AD9,

3.1.14 Data Backup F-BA-01.03 Research data collected as part of the
ITS4US Program as well as production
data shall be backed up.

Inspection UN-AD9,

3.1.14 Data Backup F-BA-02 Data back-ups shall be sent to an offsite
location or a cloud service in the event
of widespread damage to the proposed
system’s primary location.

Inspection UN-AD9,

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

26 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

SyRS
Section

Requirement
Type Requirement ID Requirement Text

Verification
Method User Need

3.1.14 Data Backup F-BA-03 Recovery of back-up data shall occur in a
timely fashion upon initiation of the
restoration effort.

Test UN-AD9,

3.1.15 Data Long
Term
Preservation

3.1.1 Data
Description

F-DE-01.01 Pedestrian built environment shall be
described using the OpenSidewalks data

standard.

Inspection UN-AD10a,

3.1.1 Data
Description

F-DE-01.01 Pedestrian built environment shall be
described using the OpenSidewalks data
standard.

Inspection UN-AD10a,

3.1.1 Data
Description

F-DE-01.02 Transportation stations and hubs shall
be described using the General Transit
Feed Specification Pathways (GTFS-
Pathways) data standard.

Inspection UN-AD9,

3.1.1 Data
Description

F-DE-01.03 Demand responsive travel services shall
be described using the GTFS-Flex data
standard, excluding real-time feeds.

Inspection UN-AD4,

SyRS
Section

Requirement
Type

Requirement ID Requirement Text Verification
Method

User Need

3.2 Physical

3.2.1 Construction

3.2.1 Construction P-CO-01 The TDEI system shall have its
processing elements and data repository
be stored in a networked central server
environment.

Inspection UN-AD9,

3.2.1 Construction P-CO-02 The TDEI system shall provide network
connections to the following tools from
many physical locations:

Test UN-DG2, UN-TS1,

3.2.1 Construction P-CO-02.01 Data collection tools. Test UN-DG2, UN-TS1,

3.2.1 Construction P-CO-02.02 Data translation tools. Test UN-DG2, UN-TS1,

3.2.1 Construction P-CO-02.03 Data vetting tools. Test UN-DG2, UN-TS1,

3.2.1 Construction P-CO-03 The following tools that are a part of the
TDEI system shall operate on standard
office computer hardware or standard
mobile tablet devices:

Test UN-DG2, UN-TS1,

3.2.1 Construction P-CO-03.01 Data collection tools. Test UN-DG2, UN-TS1,

3.2.1 Construction P-CO-03.02 Data translation tools. Test UN-DG2, UN-TS1,

3.2.1 Construction P-CO-03.03 Data vetting tools. Test UN-DG2, UN-TS1,

3.2.1 Construction P-CO-04 The TDEI system’s demonstration
applications shall operate on standard
internet browsers or mobile devices
(Android, iOS).

Test UN-DU2, UN-
DU10,

3.2.1 Construction P-CO-05 The TDEI system and all associated
components shall send data successfully
over landline or wireless internet
without priority or special
accommodation (e.g., VPNs).

Test UN-DG2, UN-TS1,
UN-DU2, UN-
DU10,

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 27

SyRS
Section

Requirement
Type Requirement ID Requirement Text

Verification
Method User Need

3.2.2 Durability

3.2.2 Durability P-DU-01 The TDEI system’s processing elements
shall be able to accommodate:

Analysis UN-DG2, UN-TS1,
UN-DS2, UN-AD1,
UN-DU3,

3.2.2 Durability P-DU-01.01 Multiple data contributors providing
sidewalk and/or transit-related data
submissions simultaneously.

Analysis UN-DG2, UN-TS1,
UN-DS2,

3.2.2 Durability P-DU-01.02 Multiple applications and application
account users requesting sidewalk
and/or transit-related data submissions
simultaneously.

Analysis UN-AD1, UN-
DU3,

3.2.2 Durability P-DU-02 The TDEI system's data translation tools
shall accommodate sidewalk and/or
transit data contributions.

Analysis UN-DG2, UN-TS1,

3.2.2 Durability P-DU-03 The TDEI system's demonstration
applications shall:

Test UN-AD1, UN-
AD4, UN-AD6,
UN-AD7, UN-
AD9, UN-AD10a,
UN-AD10b,

3.2.2 Durability P-DU-03.01 Request relevant sidewalk and/or transit
data to users that is sufficient for their
trip needs.

Test UN-AD1,

3.2.2 Durability P-DU-03.02 Receive relevant sidewalk and/or transit
data to users that is sufficient for their
trip needs.

Test UN-AD9, UN-
AD10a, UN-
AD10b,

3.2.2 Durability P-DU-03.03 Present relevant sidewalk and/or transit
data to users that is sufficient for their
trip needs.

Test UN-AD4, UN-
AD6, UN-AD7,

3.2.4 Environmental
Conditions

P-EN-02 The TDEI system's data translation tools
shall operate without degradation in
environments approved for consumer
PCs and mobile devices.

Analysis UN-DG2, UN-TS1,

3.2.4 Environmental
Conditions

P-EN-03 The TDEI system's data demonstration
applications shall:

Analysis UN-DU2,

3.2.4 Environmental
Conditions

P-EN-03.01 Operate without degradation in
environments approved for consumer
PCs and mobile devices.

Analysis UN-DU2,

3.2.4 Environmental

Conditions

P-EN-03.02 Operate with full capabilities to the end

user without disruption from ambient
background noise common in their
travel environment (e.g., sidewalks near
traffic, etc.).

Analysis UN-DU2,

3.3 System
Performance

3.3 System
Performance

PER-01 The TDEI system shall be perceived as
reliable by end users (e.g., with minimal
system freezes, crashes, and failures).

Analysis UN-DU11,

3.3 System
Performance

PER-02 The TDEI system shall adhere to the
following system performance targets:

Analysis UN-DG2, UN-TS1,
UN-DU2,

3.3 System
Performance

PER-02.01 The TDEI system comprehensively shall
be operational 99.5% of the time 24
hours a day, 365 days per year.

Analysis UN-DG2, UN-TS1,
UN-DU2,

3.3 System
Performance

PER-02.02 The TDEI system's data collection tools
shall be operational 99.5% of the time

24 hours a day, 365 days per year.

Analysis UN-DG2, UN-TS1,

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

28 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

SyRS
Section

Requirement
Type Requirement ID Requirement Text

Verification
Method User Need

3.3 System
Performance

PER-02.03 The TDEI system's data translation tools
shall be operational 99.5% of the time
24 hours a day, 365 days per year.

Analysis UN-DG2, UN-TS1,

3.3 System
Performance

PER-02.04 The TDEI system's data vetting tools
shall be operational 99.5% of the time
24 hours a day, 365 days per year.

Analysis UN-DG2, UN-TS1,

3.3 System
Performance

PER-02.05 The TDEI system shall allow for data
vetting to occur in a timely manner that
keeps data current.

Analysis UN-DG2, UN-TS1,
UN-DS7,

3.3 System
Performance

PER-02.06 Data that are uploaded to the TDEI
system's data repository shall be
uploaded without errors 99% of the
time.

Analysis UN-DG2, UN-TS1,

3.3 System
Performance

PER-02.07 The TDEI system's processing and data
repository components shall be
operational 99.5% of the time 24 hours a
day, 365 days per year.

Analysis UN-DU2,

3.3 System
Performance

PER-02.08 The TDEI system's data services shall be
operational 99.5% of the time 24 hours a
day, 365 days per year.

Analysis UN-DU2,

3.4 System
Security and
Privacy

SEC-03 The TDEI system shall require permission
from end users for use of data that may
be considered Locational PII prior to
data being collected.

Demonstration UN-DU1,

3.4 System
Security and
Privacy

SEC-04 The TDEI system shall protect user
privacy to the extent possible.

Inspection UN-AD13, UN-
DU6,

3.4 System
Security and
Privacy

SEC-09 The TDEI system shall utilize NIST SP800-
53, Recommended Security Controls for
Federal Information Systems and
Organizations for guidance to manage
system safety risks.

Inspection UN-DU11,

2.2.2 Message Streaming and Brokering: Enable Integration of

the Data Interoperability Platform

Data systems have become quite complex, particularly with the advent of distributed, cloud

computing and real-time data streams. Whereas previously, data systems had synchronous

communication between or among modules, it is no longer feasible to have all modules (including

applications, microservices, databases and any consuming application or producing application

that reads and writes data over a network) communicating directly with each other. Point-to-point

communication, as it was called, is simple to maintain and reason about when there are but a

small number of systems. However, as described in the book by Mitch Seymour, Mastering Kafka

Streams and ksqld14, “when more subsystems need to communicate, point-to-point direct

14 The Key to Mastering Kafka Streams and ksqlDB by Mitch Seymor, ISBN-10: 1492062499,

March 16, 2021

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 29

communication is difficult to scale. The result is a complex web of communication pathways that

can be difficult to reason about and maintain.” In his book, Seymour goes on to summarize the

drawbacks of the client-server model and the issues arising in point-to-point communication

patterns with the following points:

• “Systems become tightly coupled because their communication depends on knowledge

of each other. This makes maintaining and updating these systems more difficult than it

needs to be.

• “Synchronous communication leaves little room for error since there are no delivery

guarantees if one of the systems goes offline.

• “Systems may use different communication protocols, scaling strategies to deal with

increased load, failure-handling strategies, etc. As a result, you may end up with multiple

species of systems to maintain (software speciation), which hurts maintainability.

• “Receiving systems can easily be overwhelmed, since they don’t control the pace at

which new requests or data comes in. Without a request buffer, they operate at the

whims of the applications that are making requests.

• “There isn’t a strong notion for what is being communicated between these systems. The

nomenclature of the client-server model has put too much emphasis on requests and

responses, and not enough emphasis on the data itself. Data should be the focal point of

data-driven systems.

• “Communication is not re-playable. This makes it difficult to reconstruct the state of a

system.”

In the case of the TDEI, there are multiple, diverse stakeholders and it is notoriously difficult to

perform data communications to multiple stakeholders (or tenants) well. To produce interoperable

data infrastructure and negotiate messaging among all the microservice APIs, the TDEI needs to

provide a well-managed, low-latency data streaming platform. Emphasis will be placed on

efficiency, customizability, power, and reliability.

The need for asynchronous, distributed messaging is greater even in traditionally non-data driven

industries like transportation. The TDEI can take note from small and large enterprises that build

big, highly customized data pipelines. In large data companies (like Netflix, for example),

enterprises make common use of an open-source platform called Apache Kafka as a backbone

for this kind of infrastructure. Many other open-source projects are built on top of open-source

messaging architecture like Kafka.

Whether the TDEI uses Apache Kafka or one of the other options that have appeared on the

market since 2010 (including Apache PULSAR, or Redpanda), the TDEI will use the infrastructure

as an event bus. In an event bus system, subsystem services called producers produce events

— or messages, and publish them, or write, events to the TDEI topic streams. The event bus

infrastructure receives these events and records them into an ordered message history. Other

TDEI subsystem services called consumers subscribe to, or read, those events in chronological

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

30 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

order and are notified in real time as new messages are produced. In contrast with a traditional

database, which is well-suited for queries and updates against a current state, event buses excel

for applications that must quickly act on the various changes that lead to a transient current state.

This type of handling is appropriate for transportation and mobility data which should not rely on

data releases and batch processed types of data updates but can still handle such batch events.

Event bus messaging simplifies communication between systems by acting as a centralized

communication hub in which systems can send and receive data without knowledge of each

other. The communication pattern it implements is called the publish-subscribe (pub/sub) pattern.

In the pub/sub communication model, instead of having multiple systems communicate directly

with each other. Producers publish their data to one or more topics, without connectivity to any

modules that may consume the data. Topics consist of named streams (or channels) of related

data that are stored in a cluster. They serve a similar purpose as tables in a database. However,

they do not impose a particular schema, but rather store the raw data, which makes them very

flexible. Consumers are processes that read (or subscribe) to data in one or more topics. They do

not communicate directly with the producers, but rather listen to data on any stream they happen

to be interested in. Consumers can work together as a group (called a consumer group) to

distribute work across multiple processes.

2.2.2.1 Justification for Choosing Event Bus Messaging

The publish/subscribe communication model, which puts more emphasis on flowing streams of

data that can easily be read from and written to by multiple processes, comes with several

advantages, including:

• Systems become decoupled and easier to maintain because they can produce and

consume data without knowledge of other systems.

• Asynchronous communication comes with stronger delivery guarantees. If a consumer

goes down, it will simply pick up from where it left off when it comes back online again

(or, when running with multiple consumers in a consumer group, the work will be

redistributed to one of the other members).

• Systems can standardize on the communication protocol (a high-performance binary

Transmission Control Protocol (TCP) is used when talking to Kafka clusters), as well as

scaling strategies and fault-tolerance mechanisms (which are driven by consumer

groups). This allows us to write software that is broadly consistent.

• Consumers can process data at a rate they can handle. Unprocessed data is generally

stored (this varies in different platforms) in a durable and fault-tolerant manner, until the

consumer is ready to process it. This protects consumers from having to process data at

the same pace it is produced. The event handling platform will instead act as a buffer,

preventing consumers from being overwhelmed.

• A stronger notion of what data are being communicated is in the form of events. An event

is a piece of data with a certain structure and payload. Using event streaming allows the

TDEI to focus on the data flowing through the streams, instead of spending time

disentangling the communication layer like we would in the client-server model.

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 31

• Systems can rebuild their state anytime by replaying the events in a topic. This will come

in handy as the TDEI attempts to reconstruct the history of mobility data in a certain data

schema for a particular region.

2.2.2.2 Key Enabling Technology Components for Event Bus

Event buses provide an alternative to older messaging queues or monolith data-payload

communication capabilities. The architecture can be easily scaled, by adding more nodes to the

cluster and partitions to individual topics. Additionally, message brokers can persist messages for

a configurable period rather than deleting them as soon as they reach the consumer.

Table 5 Traceability for use of Event Bus Architecture as the enabling technology to

integrate TDEI microservices, conferring capabilities for the Data Interoperability Platform

SyRS
Section

Requirement
Type Requirement ID Requirement Text

Verification
Method User Need

3.2.2 Durability P-DU-04 The TDEI system and all affiliated tools
shall be capable of operating in isolation
from other components with reductions
in features.

Analysis UN-DU10,

2.2.3 Application Programming Interfaces and API Layers

The TDEI will rely heavily on the use of Application Programming Interface (APIs) and API layers.

On their technology support website,15 IBM describes APIs as follows.

“An application programming interface (API) enables different entities and

partners to open their applications’ data and functionality to external third-party

developers, business partners, and internal departments within their

organizations. This allows services and products to communicate with each other

and leverage each other’s data and functionality through a documented interface.

Developers don't need to know how an underlying service is implemented; they

simply use the API to communicate with other products and services. API use

has surged over the past decade, to the degree that many of the most popular

web applications today would not be possible without APIs.”

APIs and API Gateways will be used in multiple ways within the TDEI infrastructure to achieve

TDEI interoperability goals. Microservices are often interfaced with via APIs (as alluded to in the

left panel labeled 2.2.2 in Figure 1). However, data publication to downstream TDEI consuming

applications like AccessMap MultiModal will also be accomplished using APIs. The internal API

management instance (among microservices) could also be exposed to external users to allow

for utilization of the full potential of the APIs. Whether internally or externally exposed, this could

15 https://www.ibm.com/au-en/topics/api

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

32 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

be achieved using API Gateways forwarding requests to the internal API services, which in turn

interface with the microservices deployed in the TDEI.

2.2.3.1 Justification for APIs

Using APIs will provide the TDEI with the advantage of being able to serve many different data

producers and consumers without having knowledge of the underlying development of the data

pipelines. Use of APIs means the TDEI team can leverage many of the same tools and solutions

that have grown in the RESTful and web service ecosystem. One of the advantages of

developing our microservices with a particular API design, is that it enables natural ways to

monitor and test these APIs, which will enable the TDEI to validate the flow of data and

information throughout our microservice deployment, even when some of these services are not

running on our cloud, but in the hands of some of the Data Service Providers or Transportation

Service Providers. APIs have been in wide use for over 30 years in industry and are a proven

technology.

In general, use of APIs in the context of the TDEI, traces back to the following system

requirements:

Table 6 Traceability for use of APIs in microservice implementation

SyRS
Section

Requirement
Type Requirement ID Requirement Text

Verification
Method User Need

3.2.2 Durability P-DU-04 The TDEI system and all affiliated tools
shall be capable of operating in isolation
from other components with reductions
in features.

Analysis UN-DU10,

3.2.3 Adaptability P-AD-01 The TDEI system and all affiliated tools
shall accommodate scalable information
increases as new data is added to the
system.

Analysis UN-DS3,

3.1.1 Data
Description

F-DE-05 Data standard specifications shall be
scalable, extensible, and interoperable
in different geographic markets or to
different user populations.

Inspection UN-AD3, UN-
DU5,

3.1.1 Data
Description

F-DE-06 Data standard schemas shall be made
available to data generators.

Inspection UN-DG3,

3.1.1 Data
Description

F-DE-06.02 Data standard schemas shall use
standard classifications and
vocabularies.

Inspection UN-DG5,

4 System
Interfaces

4.1 Internal
System
Interfaces

4.1 Internal
System
Interfaces

INT-01 The TDEI system shall pass sidewalk data
from the sidewalk data collectors to the
sidewalk data processing components.

Demonstration UN-DU2,

4.1 Internal
System
Interfaces

INT-02 The TDEI system shall pass transit data
from the transit data collectors to the
transit data processing components.

Demonstration UN-TS1,

4.1 Internal
System
Interfaces

INT-03 The TDEI system shall pass data from the
data processing components to the data
repository.

Demonstration UN-AD3,

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 33

SyRS
Section

Requirement
Type Requirement ID Requirement Text

Verification
Method User Need

4.1 Internal
System
Interfaces

INT-04 The data repository shall pass sidewalk
data to the sidewalk data service
components.

Demonstration UN-AD3,

4.1 Internal
System
Interfaces

INT-05 The data repository shall pass transit
data to the transit data service
components.

Demonstration UN-AD3,

4.1 Internal
System
Interfaces

INT-06 TDEI system shall use software toolsets
to input observations into translated
data.

Demonstration UN-DU2, UN-TS1,

4.1 Internal
System
Interfaces

INT-07 The TDEI system shall use software
applications to interface between the
data and the end user.

Demonstration UN-AD2, UN-
AD4, UN-AD6,

4.2 External
System
Interfaces

4.2 External
System
Interfaces

EXT-01 The TDEI system shall pass data to
approved third-party applications.

Demonstration UN-DU3,

4.2 External
System
Interfaces

EXT-02 The TDEI system shall pass data to an
USDOT-managed system.

Demonstration UN-DU3,

2.2.3.2 TDEI Governance in Using APIs

TDEI development partners include transit agencies, mobility service providers, and mobility data

service providers, application developers and the technology components designed to consumer

mobility data. Regardless of what subsystem services will be designed by TDEI partners, the

following API development principles will be used:

Open Standards: All development partners will describe their data through specific ontologies,

schemas or formats that meet the criteria of an open standard, as defined by v1 Mobility Data

Interoperability Principles.16

Open Standards Compatibility: All development partners will publish open standards with data

stored in a way providing the ability to ingest and consume valid open standards.

Publish Data: All development partners will publish data via a documented application

programming interface (API), which may require a generated API key to access. All development

partners will expose their mobility data and functionality through API service interfaces.

Programmatic Access Only: All development partners providing data will provide a method of

accessing information in which computer programs can exchange information and commands

without requiring human intervention. There will be no other form of inter-process communication

among TDEI partners and mobility data stakeholders, this includes not allowing any direct linking,

16 https://www.interoperablemobility.org/

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

34 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

direct data reads, direct database access of another data store, or any use of shared memory.

The TDEI restricts subsystem services to communicate only via service API calls over the

network.

Full Capabilities Programmatic Access: All development partners must provide means of

programmatic access equivalent to any actions that human users can perform by means of a

graphical user interface or direct data store access.

Human Readable Open Standard and Programmatic Access Documentation: all open

standards and APIs will be documented via a format that:

• Is published in its entirety on a publicly accessible webpage in human-readable form.

• Is documented in a language-neutral machine-readable format at a permalink in a format

applicable to the following categories of schemas:

o API: OpenAPI

o Tabular data schemas (i.e., csv): frictionless data table, data resource or data package

o Tagged data schemas: json-schema. TDEI deployment data specification extensions,
use JSON:API specification to describe data models, describe how a client would be
requesting data resources (fetching or modification requests), and how a server needs to
respond to such requests. For more information on the JSON:API specification, please
see https://jsonapi.org/.

o Uses structured releases, versions, or changelogs.

o All service APIs must be designed to be externalizable. That is to say, the TDEI
development partners must plan and design to be able to expose the interface to
developers in the outside world.17

For additional overall general guidance in other TDEI API governance and design questions, the

TDEI team has found that it likes material on RESTful API design published by the Bank of

Belgium.18 This site provides excellent links to a wide variety of sources that provide excellent

guidance to possible issues that are likely to arise in the design of microservice APIs to be

constructed for use in the TDEI system. For example, the services that support interchangeable

data infrastructure or externalization of transportation data. Use of guidance like this will ensure

proper API design and reduce development risk.

17 Amazon, who also uses microservices extensively also has a famous mandate from its

Founder Jeff Bezos that states this same thought. https://nordicapis.com/the-bezos-api-mandate-

amazons-manifesto-for-externalization/

18 https://github.com/NationalBankBelgium/REST-API-Design-Guide/wiki

https://jsonapi.org/
https://github.com/NationalBankBelgium/REST-API-Design-Guide/wiki

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 35

Table 7 Traceability for governance of TDEI microservice development and operations

SyRS
Section

Requirement
Type Requirement ID Requirement Text

Verification
Method User Need

3.1.1 Data
Description

F-DE-01 Data standards shall use attributes that
support travel preferences of travelers.

Inspection
(covered by the
adherence to
Interoperability
Principles, Open
Standard
community
support criteria)

UN-AD2, UN-
DU8,

3.1.1 Data
Description

F-DE-02 The TDEI system shall utilize a common
data model.

Inspection UN-TS2,

3.1.1 Data
Description

F-DE-03 The TDEI system shall provide
unambiguous guidance/guidelines for its
participants.

Inspection UN-TS2b, UN-
DG3, UN-AD1,

3.1.1 Data
Description

F-DE-03.01 Guidance/guidelines shall be provided
through data standard specifications.

Inspection UN-DG3, UN-
DG8, UN-AD1,

3.1.1 Data
Description

F-DE-03.02 Guidance/guidelines shall be provided
through data standard schemas.

Inspection UN-DG3,

3.1.1 Data
Description

F-DE-03.03 Guidance/guidelines shall be provided
through coding instructions.

Inspection UN-DG3,

3.1.1 Data
Description

F-DE-03.04 Guidance/guidelines shall cover
generating data in approved formats.

Inspection UN-DG3,

3.1.1 Data
Description

F-DE-03.05 Guidance/guidelines shall cover quality
assurance requirements of the data.

Inspection UN-DG8,

3.1.1 Data
Description

F-DE-03.06 Guidance/guidelines shall cover
accessing data.

Inspection UN-AD1,

3.1.1 Data
Description

F-DE-04 Data standard specifications shall be
publicly available.

Inspection UN-DG4, UN-
DG6, UN-AD1a,

3.1.1 Data
Description

F-DE-04.01 Data standard specifications shall
include OpenSidewalks, GTFS-Flex, and
GTFS-Pathways.

Inspection UN-DG4a, UN-
DG6, UN-TS7,
UN-TS8,

3.1.1 Data
Description

F-DE-04.02 Data standard specifications shall be
published.

Inspection UN-DG4, UN-
AD1a,

3.1.1 Data
Description

F-DE-04.03 Data standard specifications shall be
version-tracked.

Inspection UN-DG4, UN-
AD1a,

3.1.1 Data
Description

F-DE-04.04 Data standard specifications shall be
vetted.

Inspection
(covered by the
adherence to
Interoperability
Principles, Open
Standard
criteria)

UN-DG4, UN-
AD1a,

3.1.1 Data
Description

F-DE-04.05 Data standard specifications shall
include a data dictionary.

Inspection UN-DG6,

3.1.1 Data
Description

F-DE-04.06 Data standard specifications shall
contain standardized metadata.

Inspection UN-DG5, UN-
TS5a,

3.1.1 Data
Description

F-DE-04.06.01 Metadata shall describe the origin of
collected data.

Inspection UN-DS8,

3.1.1 Data
Description

F-DE-04.06.02 Metadata shall indicate metrics for
reviewers to determine the level of
accuracy/completeness.

Inspection UN-AD11,

3.1.1 Data
Description

F-DE-04.06.03 Metadata shall describe the data
standards and structure.

Inspection UN-DG5, UN-
TS5a,

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

36 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

SyRS
Section

Requirement
Type Requirement ID Requirement Text

Verification
Method User Need

3.1.1 Data
Description

F-DE-04.07 Data standard specifications shall
include governance provisions that allow
for effective management of data
updates and revisions.

Inspection UN-DG4, UN-TS3,
UN-TS5, UN-DS1,

3.1.1 Data
Description

F-DE-04.08 Data standard specifications shall
include specified allowable values and
error tolerance levels for data standard
elements and attributes, where
applicable.

Inspection UN-DG4b, UN-
AD1c,

3.2.2 Durability P-DU-04 The TDEI system and all affiliated tools
shall be capable of operating in isolation
from other components with reductions
in features.

Analysis UN-DU10,

3.1.1 Data
Description

F-DE-06.01 Data standard schemas shall include
information about the database
structure and database metadata.

Inspection UN-DG5,

3.1.2 Data
Extensibility

3.1.2 Data
Extensibility

F-EX-01 Updates to the data schema structure
shall follow a formal update process.

Inspection UN-DG4,

3.1.2 Data
Extensibility

F-EX-02 Notifications shall be provided to
approved TDEI system users when data
schema updates occur.

Demonstration UN-DG4,

2.2.4 Intermediary API Gateway Layers Help Integrate APIs

Material taken from IBM’s web site on microservices describe API Gateways as follows19:

Microservices often communicate via API, especially when first establishing

state. While it’s true that clients and services can communicate with one another

directly, API gateways are often a useful intermediary layer. The API gateway is

the entry point for clients. Instead of calling services directly, clients call the API

gateway, which forwards the call to the appropriate services on the back end.

API Gateways grow in importance as the number of services in an application

grows over time. An API gateway acts as a reverse proxy for clients by routing

requests, fanning out requests across multiple services, and providing additional

security and authentication.”

There are multiple technologies that can be used to implement API gateways, including API

management platforms, but if the microservices architecture is being implemented using

19 https://www.ibm.com/topics/microservices - note that minor text editing has been performed on

the IBM material to make it more directly applicable to the TDEI specific material in this chapter.

https://www.ibm.com/topics/microservices

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 37

containers and Kubernetes, the gateway is typically implemented using Ingress or, more recently,

Istio.

The main function of the API Gateway is to prevent attacks by inspecting the messages passing

through the gateway. Functionalities that will be implemented via the API Gateway include API

firewalling, content validation and message integrity checks which are in place to only allow

legitimate messages to enter the TDEI data infrastructure.

The API Gateway’s Content validation will ensure that the requests made against the TDEI

microservices API are appropriate. Content validation will check that the incoming request and

data payload contain the appropriate parameters and values and that the payload adheres to the

TDEI Data schemas. The API Gateway Content Validation will essentially be an API wrapper to

engulf multiple APIs that help TDEI combine various calls that help access a set of related

functions, rather than constructing multiple HTTP API requests from scratch. This will broaden the

idiomatic ways of accessing and manipulating TDEI data. With an API wrap, TDEI will not need to

fetch any information from another API when making a call. The specific functions for content

validation will be encapsulated into a single package. Whereas the wrapper structure for content

validation may be off the shelf, the actual data schema validation microservices will be specifically

created by the TDEI, as described in section 3.2.8.1.

The Gateway’s Message Integrity Check will verify the integrity of the signed message (signed

tokens, headers, payloads) to confirm that the message has not been tampered with prior to the

API call. In addition, it can ensure that some aspects of the payload remain confidential by

encryption or other techniques. Using Message Integrity Checking, the Gateway can act as an

enforcement point which can delegate to the TDEI API Call Validation the decision as to whether

the call itself passes TDEI governance structure and can delegate to a third-party validation

service whether the message identity and intent are good or bad (i.e., call ICAP server,

PingIntelligence, etc.). The Gateway will enforce the decision from the third-party system.

Finally, since the API Gateways encounter all inbound traffic, everything can be logged. This

allows for important System Monitoring functionality, increasing the ability for TDEI to have

visibility, reporting and analytics over the use of the TDEI infrastructure. The API Gateway will

allow external monitoring of the status of the TDEI APIs that are known and governed and also to

highlight any traffic which is not governed. In this way, API Gateway provides visibility and

insights for API consumers and providers. With sufficient time and resources, the TDEI will be

able to provide usage reports to API Consumers and to the API Provider so that they can see the

traffic and trends related to their API and applications. It can also provide detailed traffic logs for

the API Provider to help with debugging of internal infrastructural issues.

2.2.4.1 Justification for API Gateway Layers

Justification for using an API gateway includes:

• API Gateways help decouple clients from services. Services can be versioned or

refactored without needing to update all of the clients.

• Services can use messaging protocols that are not web friendly.

• The API Gateway can perform other functions such as authentication, logging, secure

sockets layer (SSL) termination, and load balancing.

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

38 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

• Out-of-the-box policies, like those for throttling, caching, transformation, or validation do

not have to be bundled into other services.

Table 8 Traceability for adding API Gateway layers to TDEI microservices

SyRS
Section

Requirement
Type Requirement ID Requirement Text

Verification
Method User Need

3.3 System
Performance

PER-02.10 The TDEI system's demonstration
applications shall be operational 99.5%
of the time 24 hours a day, 365 days per
year.

Analysis UN-DU2,

3.3 System
Performance

PER-02.11 The TDEI system's demonstration
applications shall fulfill users' data
requests and provide information within
15 seconds of a query.

Test UN-DU2,

3.3 System
Performance

PER-03 The TDEI system shall support
performance tracking.

Demonstration UN-DU3,

3.4 System
Security and
Privacy

SEC-01 The TDEI system shall include user
permissions that ensure the safe and
secure transmission of data and
metadata.

Inspection UN-DG2, UN-TS1,
UN-TS4,

3.4 System
Security and
Privacy

SEC-08 The system design of the central
database shall include redundancy and
encrypted data archiving to ensure the
continued operation of the system if
major failures of or attacks on the
system occur.

Inspection UN-DU11,

3.5 Information
Management

MAN-01 The TDEI system shall encrypt all system
communications that travel over public
data links.

Demonstration UN-DU1,

3.1.1 Data
Description

2.2.4.2 TDEI Governance in Using API Gateways

In the context of the TDEI system and the system requirements of our specific instantiation, API

Gateways provide enforcement capabilities that allow us to adhere to the requirements set forth

in our Systems Requirements (driven by the multiple stakeholder partners). For instance, through

gateways, we will be able to enforce that only trusted messages (authentication and

authorization) can pass through to the APIs. Gateways will provide multiple ways for API

consumers to authenticate and get access to API resources. Gateways can support any one of

the many open standards that can be used to determine the validity of an API Consumer (i.e.,

OAuth, JWT tokens, API Key, HTTP Basic/Digest, SAML, etc.) which we foresee being used by

the TDEI for authentication purposes. While we do not foresee the following flexibility being

necessary for our instance, Gateways can also be used for non-standard means to locate

credentials in headers or payload of the message. This increased flexibility ensures that we do

not have to backtrack if we find it necessary for messages to self-authenticate.

In addition to authentication and authorization functions, the use of API Gateways is specifically

important in the TDEI context because they can inject additional metadata information into the

message about the original API Consumer. In addition to the typically exchanged metadata (IP

address, roles, attributes, claims, etc.), we foresee this being especially important in the case of

data requests and data updates, where data Producers using the API may be asked to provide

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 39

meta data like the digitally signed data verification certificates they received after using the TDEI

data vetting tools to validate the data they are contributing to the data repository. This aligns

particularly well with the requirements around the presentation of “best available data” in the

TDEI. This technical capability will help the TDEI enforce data provenance guidance around the

identity information of the data Producers and the history of the data that is flowing into the TDEI

repository, so that downstream data consumers have context about the data production and data

context. Presently, the TDEI is not tied to a specific meta data structure, but identity and

provenance propagation may be in the format of a new JWT claim or SAML token or simply

inserted into the payload (like the digital verification signature).

Additionally, use of Gateways enables the TDEI to call out to other systems or services to

determine authenticity, validation, and certification. This is important for extensibility and

sustainability of the TDEI system, for example, if eventually some of the data schemas the TDEI

stores will be federated by other organizations that will have data vetting services (for example,

MobilityData federating use of GTFS-Flex v2). This is also a useful capability in the context of

invoking some of the off-the shelf microservices we will likely be using, as described in section

2.2.3. For example, it could call out to an external Identity Provider or authorization system.

Similarly, a customs agent might check an individual’s information against a known database of

Producers.

Table 9 TDEI-specific governance using API Gateways traces back to associated System

Requirements.

SyRS
Section

Requirement
Type Requirement ID Requirement Text

Verification
Method User Need

3.2.2 Durability P-DU-04 The TDEI system and all affiliated tools
shall be capable of operating in isolation
from other components with reductions
in features.

Analysis UN-DU10,

3.3 System
Performance

PER-02.09 The TDEI system shall fulfill application
developers' data requests and provide
approved information within 15 seconds
of a query.

Test UN-DU2,

3.4 System
Security and
Privacy

SEC-02 The TDEI system shall include
procedures that ensure the safe and
secure transmission of data and
metadata.

Inspection UN-DG2, UN-TS1,

3.4 System
Security and
Privacy

SEC-05 The TDEI system shall ensure that IT
policies and safeguards are consistently
up to date to reduce unauthorized
access to routing request data.

Inspection UN-AD13, UN-
DU6,

3.4 System
Security and
Privacy

SEC-06 The TDEI system shall make efforts to
ensure that the overall security of the
data lake or repository are not
compromised.

Inspection UN-DU11,

3.4 System
Security and
Privacy

SEC-07 The TDEI system shall include an
audit/reporting system that routinely
scans for security risks.

Inspection UN-DU11,

3.5 Information
Management

MAN-02 The TDEI system shall contain different
access levels (e.g., open and private),
with defined user roles, to prevent
unauthorized access of data and provide
protection for sensitive private data.

Inspection UN-DU1, UN-TS4,

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

40 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

SyRS
Section

Requirement
Type Requirement ID Requirement Text

Verification
Method User Need

3.5 Information
Management

MAN-03 The TDEI system's demonstration
applications shall not share user account
information with the processing or data
repository components.

Demonstration UN-AD13,

3.7 Policy and
Regulation

POL-01.01 System-specific cybersecurity policies
shall be implemented to protect
restricted datasets from unauthorized
access.

Inspection UN-DS1a,

2.3 Integration Architecture

In this section, we describe an end-to-end approach to utilizing the three enabling technologies

named above. In the first subsection below, we describe how the technologies integrate into the

functional requirements of the TDEI. In the second subsection, we provide an end-to-end

approach to utilizing all three enabling technologies in a workflow that uses imagery input data,

run through a computer vision pipeline, in a workflow that traces from the Data Service Providers

to the TDEI data store and back for model retraining, when applicable.

2.3.1 Component Integration

Figure 3 (repeated from its introduction in the discussion of microservices architecture) provides a

high-level view of component integration--a functional view of the microservices architecture,

APIs, and event buses and how they might interact in the context of the TDEI. The overall

composition lends agility and scale to the architecture. The image is subdivided into seven

functional panels, with each panel having white vertical text in the upper right corner of the panel

that describes the overall function of that panel.

The first panel is labeled “variable inputs.” We anticipate handling a large variety of inputs in the

eventual implementation of the TDEI interoperable infrastructure. The conceivable data streams

we may eventually handle are highly varied, ranging from the sidewalk and transit data of specific

interest in the ITS4US project, but potentially expanding in the future to include weather data (are

the sidewalks covered in snow), incident data (are the buses being re-routed), and a variety of

potential smart-city sensors that at some point in the future might be valuable inputs to a

traveler’s navigation decision.

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 41

Figure 3 Component Integration: Showing how microservices, APIs, and event buses

interact in the TDEI.

Within each panel are text-labeled elements, for example “API Gateways” are one of the

elements in the second panel, “API layer.”. The elements are intended to represent a group of

microservices that, when considered together, provide the TDEI with the functionality described in

the element’s text. So, “API Gateway” is a group of different smaller applications that together

function as an API Gateway, with the specific features that were discussed in Section 2.2.4,

Intermediary API Gateway Layers Help Integrate APIs.

The specific functional elements described in Figure 3 include the following:

• “API Gateway” “APIs for users, applications and analytics” and “Internal API

Management” all serve as functional units in the “API Layer” Panel. A detailed view of the

expansion of this API Layer is provided within the Technology Readiness Level

discussion, please consult Section 3.5.3. Based on the Technology Readiness

Framework introduced by the FHWA Technology Readiness Level Guidebook, we

followed the procedure above and conclude that message brokerage technologies are at

readiness level 5.

“Event Handling”, “Event Log History” and “Data Ingestion and Integration Services” all

serve as functional elements within the “Load and Ingest” Panel.

“TDEI data Lake/Warehouse for variable data types” comprises managed storage for

multiple data types under the “Storage and Replication” Panel.

“ML Pipelines” and “TDEI Analytics” provide processing units under the “Analytics and

Real Time Processing” Panel.

2.3.2 Sample Integration and an Image Data-Stream Ingestion

Example

To exemplify our eventual TDEI data architecture and microservices orchestration, we provide an

example workflow for our humans-in-the-loop, mostly automated, smart OpenSidewalks data

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

42 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

ingestion pipeline. The pipeline demonstrates use of computer vision algorithms in a

microservices context to analyze data, microservices and event streams to run and trigger system

activities, and we use decoupled services to leave room for improving processes over time.

Computer vision is an increasingly popular smart city application used in safety, quality assurance

and asset monitoring applications. In this example, 2-D street-level imagery is assumed to be the

input (for example, cameras are attached to trash collection trucks that are pointed at pedestrian

environments). The data serves as input to a machine learning model. The model makes

calculations and inferences, returning output that can be used for creation and update of

OpenSidewalks data as well as for troubleshooting assets in the built environment.

This example architecture shows an end-to-end approach to computer vision from the edge to the

cloud and back. While this architecture is reaching beyond the end point of the ITS4US

Deployment Project, it offers a vision of how the architecture we are building in this deployment

project and the associated demonstration projects can be operationalized and scaled to sustain

and maintain the data collected and pipelines created under this ITS4US Deployment Project.

The example architecture below is divided into operational areas:

The first operation area consists of microservices to operationalize real time processing as well

as load and ingest. Our machine learning operations are part of the processing microservices.

This architecture reflects a best practice to productionize machine learning. These microservices

automate the process of using computer vision models for analyzing street-level imagery and

producing OpenSidewalks data schema-compliant data. The key to this pipeline is a tight

coordination of the microservices and the event handling,

The second operation area displayed here offers a data life cycle management approach based

on DevOps techniques.

The third operational area display here is event handling and notification. This example

architecture describes a human-in-the-loop approach, in which people are notified to intervene at

certain steps in the data conflation and vetting. Their interventions become part of the intelligence

captured by the models, creating a continuous cycle of training, testing, tuning, and validating the

machine learning algorithms.

Figure 4 is a TDEI specific version of a sample Microsoft architecture diagram. The data flow

envisioned in this figure as applied to the TDEI is as follows:

(Step 1) TDEI Image/Batch Data/Mobile Data Processing Application consists of a microservice

that gathers data from the edge device (an image data stream) and an associated TDEI

microservice to analyze that data. On the edge device, it captures the live image stream, breaks it

down into frames, and calls the TDEI service that performs inference on the image data to extract

the OpenSidewalks data schema.

(Step 2) TDEI raw media storage allows for upload and storage of raw imagery data files in the

TDEI raw media store. These files will be used for training and testing purposes if the data

producer (for example, the city of Seattle) allows the TDEI to make use of imagery in this way. If

data is not allowed to be used in this way, the imagery is discarded and only the OpenSidewalks

extracted data persists.

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 43

(Step 3) Extracted OpenSidewalks data represents the inference results and metadata captured

by the TDEI computer vision analyzer microservice on the edge module. Inference results are

sent to the TDEI Hub that is an event hub that publishes this data entry to a topic. The TDEI Hub

acts as a central message hub for communications with other microservices.

(Step 4) TDEI Integration Server listens to the TDEI topics for messages about data input events.

(Step 5) The Integration Server routes inferencing results and metadata to the TDEI Data

Lake/Warehouse for storage. The Integration Server also publishes to a topic in the TDEI event

stream all the changes committed to the OpenSidewalks graph for that region. The TDEI event

streams are designed to provide a full history and provenance of the data in the TDEI shared

data. All data entries are logged (in the TDEI event log) and the up-to-date data can be fully

traced through the event stream.

(Step 6) The Integration Service routes any conflation problems (for instance, data just entered

through the inference module is identified to conflict with the current OpenSidewalks data for a

particular sidewalk asset) to a human in the loop. The Integration Server publishes to a topic

which is then listened to by the TDEI Registration module. The TDEI Registration module

identifies the entity that produced the data (city of Seattle) and accesses the e-mail information

for the human identified as the person to notify in the event of data conflicts. The person is e-

mailed a notification asking them to assist in conflict resolution.

(Step 7) The notified individual (identified in the image as a site engineer) opens a TDEI client

application (for example, a Vespucci client used in the Common Paths application) to

acknowledge and resolve the conflict. The TDEI Power Apps deployment is the server-side

microservice to listen for the conflict resolution event and trigger (by publishing to topics) the

appropriate downstream TDEI response to the conflict resolution effort performed by the site

engineer.

(Step 8) The TDEI Power Apps may also be asked (by the site engineer) to provide more context

for the conflict resolution, including having to pull inferencing results or any metadata from the

TDEI Data Lake, or the raw image files (if available) to display the relevant information about the

data conflict.

(Step 9) TDEI Power Apps updates TDEI Data Lake with the conflict resolution provided by the

site engineer. This step provides for human-in-the-loop input for enhancing validation, which

allows for model retraining. The TDEI Power Apps also publishes anything to the Event Handler

topics to trigger any further downstream TDEI response to the conflict resolution effort performed

by the site engineer.

(Step 10) TDEI Data Orchestration (Data Factory) microservice is the data orchestrator that

fetches raw imagery files from the TDEI raw media storage together with the corresponding

inferencing results and metadata from TDEI Data Lake/ Warehouse.

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI | 44

Figure 4 Sample architecture20 describing human-in-the-loop approach to ingesting, creating, and maintaining sidewalk data in TDEI

interoperable data sharing infrastructure

20 https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/ai/end-to-end-smart-factory

https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/ai/end-to-end-smart-factory

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI | 45

(Step 11) If allowable, the TDEI Data Orchestration might also store the raw imagery data files,

along with the TDEI metadata, in the TDEI Data Lake/Warehouse (in other databases than those

devoted to OpenSidewalks data). The Lake serves as an archive for auditing purposes, if allowed

by the data producer.

Note: the remaining steps described in the data flow are not part of the SyRS or

requirements defined for the UW ITS4US/TDEI Deployment Project. We are interested in

demonstrating this integration to make sure that the architecture we build under this

deployment project will provide us the capability of extending and scaling to these

capabilities in the future.

(Step 12) If allowable by the data producer, the TDEI Data Orchestrator would provide street-level

2D image frames. It could then use the machine learning engine (TDEI ML engine) to infer results

(e.g., sidewalk characteristics) from those results a generate infrastructure labels. It would then

upload the results into the TDEI machine learning storage (the higher latency, less accessible

machine learning data store for future model training and testing).

(Step 13) The TDEI ML engine listens to a topic specific to posted changes in the training dataset.

The previous step is published to an event stream topic. That topic is listened to by the TDEI

DevOps model orchestration microservices which triggers downstream training, testing and

validation processes.

(Step 14) Changes to the model also post to an event stream. That stream is also listened to by

the TDEI ML engine. This step would be an alternative route to the model training, along with a

possible manual trigger, all of which lead the TDEI ML Engine to perform machine learning model

training and validation processes.

(Step 15) TDEI ML engine starts training the model by validating the data from the TDEI ML data

storage. TDEI ML engine then uses that dataset to train the model. It also can validate the trained

model's performance. Finally, it can score testing data against the newly trained model. The TDEI

ML engine thus evaluates the performance of the newly trained ML model and determines if the

new model is better than previously trained models. If the newly trained model is better, the ML

engine builds a new version of the TDEI image/batch data/mobile data processing service as

another TDEI data tenant application.

(Step 16) Assuming a new TDEI data tenant application was created, the TDEI ML engine

registers the new model into the TDEI Application Registry. In effect, the TDEI ML engine

registers the new inference model microservice as an external data tenant application from which

the TDEI will accept API calls to push data to the TDEI (much like the TDEI image/batch

data/mobile data processing service that was previously used in Step 1 to process images

delivered from the data producer’s image collecting engine, process those images, and push the

data to the TDEI). By being a TDEI registered application, data posted to the TDEI API asserts

that the data is coming from an authorized data producer application. An alternative would come

from other authorized registered applications, like the Common Path application, which is another

planned data tenant-registered application for pushing OpenSidewalks data.

(Step 17) The TDEI API Gateway reviews the application that the TDEI ML engine tried to register

as an authorized TDEI data producer application in the TDEI Application Registry.

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

46 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

(Step 18) If the application passes the API Gateway review, it is registered via the TDEI

Application Registry which publishes the new registrant to a topic. That topic is published to the

TDEI Event Log.

(Step 19) The message published to the event log triggers the TDEI Hub to replace the old data

processing service with the new. The application is containerized and pointed to by the API call

for image processing. The TDEI Hub also reaches out to the data producer (City of Seattle) to

inform the camera on the trash collection truck that a new version of the application is now

available, but no other changes need to take place on the edge device.

2.3.2.1 Procurement for the Sample Integration

In this section, we describe a possible procurement scenario for this integration example. Given

the complexity of the example, we have only investigated actuating this on the Azure Cloud

platform, which is the cloud platform we currently use for all OpenSidewalks and AccessMap

development. As a result, the following discussion references specific Microsoft Azure services

which are described in the company’s technical literature.21

While use of the platform is not currently free, all our code is and will be open-source and free to

use. Currently, our code is not cloud-platform dependent. Some of the components described

below will tie the TDEI to the Microsoft platform, which the TDEI will attempt to avoid. We foresee

that a viable development path is to first implement the infrastructure as a working

implementation in the Microsoft Azure platform and then progressively identify or build non-

platform dependent microservices to replace the Azure-specific modules.

The following components will be used to implement this architecture:

• TCAT’s Computer vision pipeline for street-level imagery enables developers to quickly

build an artificial intelligence (AI)-powered image analytic solutions on the edge to extract

viable OpenSidewalks data from images, whether stored or streaming. The publication,

Zhang, Yuxiang, Sachin Mehta, and Anat Caspi. "Collecting Sidewalk Network Data at

Scale for Accessible Pedestrian Travel." The 23rd International ACM SIGACCESS

Conference on Computers and Accessibility, 2021 describes the technique.

• The TDEI Event Hub can be implemented using the Azure IoT Hub. This would serve as

the central message hub for communications in both directions between external

applications, data streams, attached devices, and the TDEI infrastructure.

• The TDEI ML engine can be deployed with the Azure Machine Learning module, capable

of building, training, deploying, and managing ML models in a cloud-based environment.

• The TDEI data storage and TDEI raw media storage can both be implemented via

Microsoft Dataverse, the cloud-based storage platform used by Power Apps to support

21 https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/ai/end-to-end-

smart-factory

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 47

human-in-the-loop notifications and to store variable data (such as meta data and other

data schemas) associated with other components used by the data pipeline.

• TDEI Application Registry as well as the TDEI Container Registry can be both

implemented using the Azure Container Registry (both are needed for orchestration in

our architecture, but the TDEI Application Registry was not shown in Figure 4.) Azure

Container Registry creates and manages the Docker registry. Container Registry builds,

stores, and manages Docker container images, including containerized machine learning

models. Currently our computer vision models are not containerized.

• The TDEI ML storage can be implemented via Azure Blob Storage. This storage service

provides a local ML data store and data cache for when one is needed for training the ML

model.

• The TDEI Data Lake/warehouse can be implemented with the Azure Data Lake Storage

Gen 2, which provides a low-cost, tiered storage on top of Azure Blob Storage. In our

example, it provides the archival street-level image store for the raw image files and

metadata.

• The TDEI Integration Server will have a lot of TDEI-specific logic, but the component itself

can use the infrastructure of Azure Logic Apps to create and run the automated

notification workflow that sends SMS and email alerts to the site engineers (a

communication component that we have not yet implemented in the integration server).

• The TDEI Analytics engine can be implemented via Azure Monitor which collects

telemetry from Azure resources in order to proactively identify problems and maximize

system performance and reliability.

• The TDEI Data Orchestration module can be implemented via Azure Data Factory. This is

an Extract, Transform, Load (ETL) pipeline and data integration service that allows us to

create fast data-driven workflows for orchestrating data movement and transforming data

at scale. In our running example it orchestrates the data used in the ML process in an

ETL pipeline to the inferencing data, which then stores it for use in retraining the ML

model. In our original functional component depiction in Figure 2, almost the entirety of

the panel named “Load and Ingest” can be implemented with the use of this component.

• The Power Apps can remain decoupled apps, services, and connectors that the TDEI will

custom build, along with a data platform. This will free us to move off the Azure paid tier

once the heavy lifting components (all those mentioned above) are replaced.

• Finally, although not mentioned in the example above, a CI/CD (continuous integration

and continuous deployment) pipeline is a good investment for us to be able to scale and

swap out applications without impacting TDEI data producers or consumers. Azure

DevOps can provide this team-based developer service functionality. In our example, it

will displace some of the functionality we described in the TDEI ML Engine in that it can

take over triggering the ML Engine when it learns from new data. (This component will do

so with serverless tasks.) It can take over the ML model comparison and the new builds

of the inferencing service container application on the edge. It has these additional

capabilities not originally scoped for the TDEI because it features Azure Pipelines for

creating continuous integration (CI) and continuous deployment (CD) pipelines.

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

48 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

2.3.2.2 Integration Alternatives and Considerations

In this section, some alternative implementations still within the Azure cloud infrastructure are

listed.

Model orchestration can also be done using Azure DevOps, which has the benefit of being closely

tied to the model code. The training pipeline can be triggered easily with code changes and

through a standard CI/CD process. The TDEI has not explored all of the possible options in this

approach.

Model orchestration can also be done using Azure Data Factory. The benefit of this approach is

that each Data Factory pipeline can provision the required compute resources. One concern is

that Data Factory doesn't hold on to the Azure DevOps agents to run ML training. This might

congest the normal CI/CD flow.

Instead of using the data pipeline to stream data from producers, and then break down the data

push into separate image frames, one option would be to deploy an Azure Blob Storage module

onto the TDEI data tenants that are producing image streams. Then the inferencing module can

work on the device owned by the data tenant and only upload the inferred TDEI-compliant data to

the TDEI. The TDEI will determine when to upload the frames directly to the ML data store. The

advantage of this approach is that you remove a step from the data pipeline and potentially avoid

conflict with organizations that do not want to share the raw imagery data. The tradeoff is that the

data streaming devices at the TDEI data tenants are tightly coupled to Azure Blob Storage.

As part of the human-in-the-loop transactions, TDEI data tenants assign people to check and

evaluate conflicts in data, as well as check and evaluate the results of machine learning

predictions. Human expertise is captured and is used to validate the model downstream. If the

model's results are inaccurate, the data is checked again, and the algorithms can be retrained.

Roles can be assigned to the humans intervening in this loop, including data labelers. (This

applies to working with image data or 3D point cloud data, extracting information that applies to

traveling through spaces and annotating it.) The resulting labeled data sets can be used for

training and retraining algorithms that can automate the extraction of path information from

imagery or 3D point cloud volumes.

The role of the Data Scientist (a TDEI personnel) is to use labeled data sets to train the

algorithms to make predictions. Data scientists register, deploy, and manage models. Currently

our data scientists use our own python infrastructure and although we use GitHub for versioning,

we do not have automated solutions for continuous integration processes (processes that

automatically trains and validate a model). In the integrated scenario, we would aim to make use

of pipeline processes that allow for automated triggers. New training should be triggered when

new data populates the dataset or when a change is made to the training scripts.

Data tenant engineers oversee tenant applications within their native institutions (like IT

personnel at King County Metro paratransit). The tenant data applications run in containers and

are registered with a Container Registry. Using a continuous deployment pipeline, they can

deploy and scale the infrastructure on demand.

When the site engineers receive any conflict or incident notifications, they can manually validate

the results or predictions of the machine learning model. For example, they might examine a road

2. Identify Enabling Technologies

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 49

shoulder that the model predicted as a sidewalk and they would indicate that the algorithm had

failed. This position would be called a conflict resolution engineer.

When questions arise about a model's predictions, safety and responsible AI auditors can review

the archived input data streams (or those portions that made it to the TDEI storage) to detect

anomalies, assess compliance, and confirm results. This position would be called a safety and

responsible AI auditor.

Availability

Most of the components used in this example scenario are managed services that will

automatically scale. The availability of the services used in this example varies by region.

According to the Microsoft Azure technical documentation,22 apps based on machine learning

typically require one set of resources for training and another for serving. Resources required for

training generally don't need high availability, as live production requests don't directly hit these

resources. Resources required for serving requests need to have high availability.

Monitoring

The TDEI analytics engine as well as the TDEI monitoring microservice provide metrics and

quantitative assessments to enable TDEI monitoring to enable diagnosis, interrogation, and

troubleshooting.

Scalability

The TDEI hopes to lay the foundation for long-term scalable interoperable shared mobility data

architecture. Scalability applies to the data ingestion pipeline, where we hope that TDEI

maximizes data movement by providing a highly performant, cost-effective solution.

Security

Access management mechanisms in the API Layer are designed to help ensure that only

authorized users can access the environment, data, and reports. Storage is encrypted using

customer-managed keys.

DevOps

DevOps practices are used to orchestrate the end-to-end approach for the TDEI infrastructure. If

your organization is new to DevOps, the DevOps Checklist can help you get started. The

Integration Server example and the Common Paths example are single-tenant projects that

include a deployment and pipeline examples.

22 https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/ai/end-to-end-

smart-factory

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI | 51

3 Technology Readiness Level (TRL)

Using the framework documented in Section 2.1, we provide the TRL for each ET identified in

Section 2.2 of this document. We demonstrate this individually for each ET below. We also

considered the entire group of related ETs that are integrated together.

3.1 TRL Assessment Process

In this section, we provide the steps and resources we plan to use to follow the framework

documented in Section 2. We describe only those areas of the enabling technologies that require

specific investigation on the part of our TDEI team, current technical gaps and questions pointing

to next steps in the technology’s development that may be uncovered. Where appropriate, we

consider the level of effort required to move the enabling technology from its current tech

readiness level to deployment ready.

Within each subsection devoted to a specific enabling technology (ET), we will consider the

following questions pertaining to the deployment of microservice architecture in the TDEI:

• What questions remain gaps in knowledge for the team in implementing and deploying

this enabling technology?

• What are the evaluation steps to follow for each question?

• How will you evaluate the ET TRL in context of the conditions for your project and site?

• Which team members or roles will you engage in this investigation?

• How will you avoid potential bias of your group which could influence TRL results?

• How will you ensure the data you use for the TRL results is valid and current?

• Will your process require the reevaluation of the TRL results in a later time in the project

to support future Phase 2 and 3 documents?

3.2 Microservice Architecture

3.2.1 What Questions Remain Gaps in Knowledge for the Team in

Implementing and Deploying This Enabling Technology?

From the TDEI perspective, there are two primary considerations in choosing how to apply the

microservices architecture, (a) evaluating the benefits/detriments of using specific languages for

implementing and standardizing the microservices architecture and (b) taking careful

consideration to designing the microservices, determining how they are decoupled and separated

if each microservice is to truly have separate data access and view of the data stores, and

whether we strictly adhere to ‘no data sharing allowed’ among microservices.

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

52 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

3.2.2 What Are the Evaluation Steps to Follow for Each Question?

3.2.2.1 TRA Question 1: Choosing a Language and Technology for

Microservices

With microservices, we can build a reliable platform to extend and grow while taking advantage of

diversity in languages. It’s possible to use different technologies or languages for different

services, but we will likely want to choose at most two, one to support our backend integration

server infrastructure, which will have access to all the transportation data layers and graphs, and

the second to support all the externally facing APIs. The microservices architecture can result in

additional operational overhead, since microservices are often running on other machines and

require a network hop between your services.23 This can slow down the whole system

considerably. The choice and diversity of programming languages used in the system can also

increase that performance overhead. Consequently, this task requires (1) coming up with a

coherent assessment criteria and path for comparing and contrasting the choices, and (2)

performing the comparison. In the least, the evaluation should include some of the most common

languages and their attributes: Java (along with its many microservices extensions), Golang,

Python, Node JS, and .Net. Please see the Technology Readiness Level Assessment in Section

3.5.1 TRA: Microservice Architecture I which we used industry sources to evaluate the languages

named here.

The goals of microservices lead us closer to serverless architecture. It helps limit the degree to

which data and services are integrated. This in turn can help limit limiting the growth in required

compute time as both the data and size of the TDEI increases.24 Microservices are also

particularly useful for large, complex systems, which require the ability to frequently add or

change system capabilities or features in a rapid, reliable manner. It separates complex systems

into a more granular and modular design, allowing modules to be replaced, when necessary, with

limited impacts on other modules in the system.25 But the choice of language(s) will impact the

degree to which we gain value from the use of the microservice architecture.

3.2.2.2 TRA Question 2: Architecting Separate TDEI Microservices,

How They Are Decoupled, What Resources They Are Allocated

and How They Interact

This, indeed, is the heaviest lift and uncertainty we currently have with the TDEI.

23 https://adamdrake.com/enough-with-the-microservices.html

24 IView Labs – 9 Key Points to Decide on Microservices Architecture -

https://iviewlabs.medium.com/9-key-points-to-decide-on-microservices-architecture-

c390d9827db7

25 Microservice Architecture - https://microservices.io/

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 53

One common concern with microservice architecture is that it is difficult to define appropriate

and effective boundaries between the microservices as the system is developed. The TDEI

team believes we have sufficient experience to perform this task. Our previous work with the

data flow and system processing required in our earlier OpenSidewalks applications give us

the use cases needed to inform the starting points to begin outlining the microservices

breakdown, at lease for the uses the TDEI wishes to prioritize and address. The additional

use cases would serve as keeping us abreast of potential future issues, risks, and points of

failure, and provide the backdrop to curate our approach and give us a deeper understanding

of what tools and modularization would provide the best, most decoupled approach. Every

technology decision depends on the tools we use to develop for data consumers or

producers in other parts of the interoperable data sharing platform of the TDEI.

The goal is to have the TDEI powered by applications that are decoupled from one another.

There are numerous downsides to failure, and our evaluation of our proposed microservices

arrangement will attempt to avoid requiring real-time, consistent access to functionality or

data managed by another service, 26 as maintaining clean segregation of services and

passing data asynchronously ensures efficient service provision. We will also clearly define

the middle layers or event stream topics that help services communicate.

The topic of messaging and separation of services bridges into the next enabling technology, but

it is worth addressing the topic here in that there is interaction between the microservices used

and the message brokers the TDEI may choose to use, and we should ensure that there is

compatibility between the microservice architecture and popular open-source message brokers

such as ActiveMQ, RabbitMQ, and other managed Apache Kafka services.

Finally, we will ensure that our microservices can connect into one or more event bus topics,

publish new events and/or consume events. These actions, which can consist of simple

notifications of actions, state changes, or other microservice dataset activities, need to take place

sequentially.

Ultimately, the decisions will also depend on the current knowledge of our development team.

Specifically, this effort will be led by the Data Management Architect and Lead, with support

from the Technical Application Lead and the Deployment Development Lead.

3.2.3 How Will You Evaluate the ET TRL in Context of the

Conditions for Your Project and Site?

We will spend one week detailing all our known use cases for the TDEI (for all three data

standards) and apply priorities to these use cases to identify the use cases we wish to address

first, but those that we are aware of must be considered in the planning and evaluation phases.

We will spend two to three additional weeks using those ranked use cases to identify a coherent

evaluation criterion that clearly delineates our necessary features and desired attributes for (1)

26 SHIFT Commerce's Journey: Deconstructing Monolithic Applications into Services -

https://blog.heroku.com/monolithic-applications-into-services

https://blog.heroku.com/monolithic-applications-into-services

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

54 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

the language and technology choices we make in the building of microservices and (2) the

microservices build plan which will determine what microservices we build, how they are

decoupled and how they interact within the context of the TDEI and in what order we build them.

We will spend five additional weeks executing and researching this comparison, evaluating the

different options, and coming up with a plan and contingency plan.

3.2.4 Which Team Members or Roles Will You Engage in This

Investigation?

Specifically, this effort will be led by the Data Management Architect and Lead, with support from

the Deployment Development Lead and the Technical Application Lead.

3.2.5 How Will You Avoid Potential Bias of Your Group, Which

Could Influence TRL Results?

We believe that using on-the-ground use cases and the real data we have had the privilege of

having will help us avoid bias. We will also conduct a hypothetical discussion of how we may

extend this infrastructure to support additional prioritized data schemas, such as supporting

bicycle and micromobility data types.

3.2.6 How Will You Ensure the Data You Use for the TRL Results

Are Valid and Current?

We are fortunate to be a trusted partner to organizations and institutions who have shared and

continue to share data with us. They keep us up to date. Additionally, the device end-users are

the best validity checks on our data. We maintain our data as up-to-date as we can in order to

allow our application users to benefit from the use of the data.

3.2.7 Will Your Process Require the Reevaluation of the TRL

Results in a Later Time in the Project to Support Future

Phase 2 and 3 Documents?

Our deployment projects will provide the most informative evaluation and evidence of the results

of this effort. In the sections below we discuss some of the initial explorations we have made to

identify various off-the-shelf as well as TDEI-specific microservice infrastructure.

3.2.7.1 Sample Microservices – Off-the-Shelf and TDEI-Specific

It is important to understand that the integration example provided in Section 2.3.2 Sample

Integration and an Image Data-Stream Ingestion Example can (and should) be coupled with a

microservices architecture. In fact, it is assumed that microservices play a role, and even with the

procurement example given, it is still important for the TDEI to architect separate microservices

well, responding to the second TRA question above (Section 0) For the purposes of better

understanding the TRL of Microservice deployment, we offer an exploration and a more nuanced

view of some core microservices we may want to develop and those we may be able to easily

procure and use off the shelf.

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 55

As noted, using microservices provides a distinctive method of developing software systems that

focus on building single-function software modules, each of which has a well-defined mechanism

for interfacing that function with other modules in order to achieve smooth and efficient

operations. The additional advantage to using such architecture is that certain single-function

modules can be used off-the-shelf (OTS) without adaptation. This will provide a significant

advantage to our small, decentralized development team. Several single-function established

microservices are expected to be used off-the-shelf, providing low-risk, high-returns established

technological advantage.

3.2.7.2 OTS: Security, Identity, and Authentication Microservices

• Digital identity is at the core of any data application, but especially data provisioning -

invisible yet crucial. Any Data Generators, Providers or Consumers will require a digital

identity known to the TDEI, to represent entities interacting with it, and be associated with

a certain level of access to data.

• Identity is complex. There’s username and password authentication, social connections,

single sign on, and these are just ways to login. Multifactor authentication, breached

password detection, anomaly detection, securing sensitive data like passwords, and

many other topics comprise identity. These are outside our domain of expertise, but off

the shelf solutions exist for this purpose. We have identified an open-source solution in

OAuth.

3.2.7.3 OTS: Messaging TDEI Data Generators, Providers, Consumers

There are numerous GIS data platforms, tools, and sensors that transportation and municipal

agencies use today to maintain GIS assets about pedestrian mobility. There are also many

different mechanisms by which user organizations (whether data generators, providers or

consumers) are communicating with other organizations. Given all these data channels and all

these messaging channels, getting a consistent message to all the data stakeholders can be a

challenge. Messaging is especially important in this instance where the TDEI will be creating the

data infrastructure at the same time as the data specifications themselves are changing and

extending. Moreover, some of our stakeholders (like CALACT, for instance) will require bi-

directional communication and require engaging with organizations in conversation rather than

just ‘broadcasting’.

In particular, a specific use case we foresee requiring this kind of messaging is in the case of two

data producers having geographically overlapping jurisdictions where entries into the TDEI may

identify conflicting information that only the data producers on the ground can resolve. An

example of such a conflict that may arise is having OpenSidewalks data furnished by both the

City of Seattle DOT as well as King County Metro, where the location for a particular bus stop

may diverge between one producer and another. The TDEI may identify the conflict but is unable

to adjudicate between the two versions and therefore must be able to message all the producers

that overlap in that region that a data conflict needs to be resolved, potentially via on-site

confirmation. The messaging interface would be utilized in that case to alert all parties involved.

(This same example also appeared in the workflow example in Section 2.3.2)

Twilio, or Azure Power Apps and Azure Communication Services are all examples of platforms

that provide messaging and communications API and services to handle SMS, voice, and other

forms of communications to deliver consistent messaging across all channels. While a TDEI-

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

56 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

specific instantiation would be appropriate for the TDEI, this technology is already in market,

offering Technology Readiness Level of 5, per the FHWA Technology Readiness Level

Guidebook.

3.2.7.4 OTS: Data Consumer and Producer Registries

• Microservices are inclusive of numerous ‘plugins.’ Although the previous integration into

Azure Cloud example provided a single monolithic application of the Azure solution to the

Extract, Transform, Load and Data Integration problem, there are additional alternatives

we can use in addition to creating our own with instance Data Consumer and Producer

Registries.

• To a degree, this is the traditional way to do Extract, Transform, Load (ETL) – data is

transformed on ingest and outputted with new structure and schema to the data platform

(this could be a database or data warehouse). In this case we’re treating all the input

organizations as just another data source that provide organizational systems of record.

• There are a few aspects to these microservices that can be TDEI-specific architected to

be responsive to the following system requirements:

• TDEI data microservices shall perform basic tasks of transforming GIS data to TDEI

standard schema format (the specific formats that will be available will be refined based

on partner inputs, for example, for now we are prepared to transform centerline and

polygonal asset management data for sidewalks)

• TDEI data microservices shall account for unique characteristics of event streamed data

from on-demand transit services.

• TDEI data microservices shall capture the type of data that lends itself to provenance

information and metadata analysis – such as application logs, clickstream, and sensor

data, which are frequently used in data science initiatives. (This will likely drive a further

set of requirements as we are leaving this unspecified to accommodate versatile and yet

unrealized data, for example, internet of things data streams from elevator infrastructure

inside transit facilities).

• TDEI data microservices shall not be lossy even if not all the data provided necessarily

fits into the TDEI data schemas, the streamed information will be preserved.

• Integration: TDEI data microservices can be identified in a microservice registry

framework that uniquely describes these software connectors/adapters and that

publishes this information to other services. This requirement is a child requirement to

providing data provenance and accountability throughout the TDEI system. To be able to

track data provenance successfully, it is necessary to identify which agents acted on a

data record and what was the transformation performed on the data. In our case, the

notion of an agent used here is extended to include our own software

connectors/adapters that will do something to the data. It is thus necessary to provide a

framework that uniquely identifies and describes this software service and makes this

information accessible to other services in case data must be rebuilt and traced. The best

approach for this is to store this information into registries. A registry is defined as a

system for keeping an official list or record of items. In the case of the TDEI, we will use a

registry database populated with information that can be updated and accessed. This

concept is used in micro service-based architecture to define a service registry, which is a

database populated with information about services.

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 57

• Several technology work products will be at play and developed here:

a. Providing the microservices that service the data producer community with the necessary

Extraction, Transformation, and Loading tools.

b. Providing a registry database for the available services. A natural extension of this work,

but which is outside the scope of work for this effort and is provided on top of this registry

database, would be to build interfaces for services to automatically register into the

registries and for clients to discover these services in an automated fashion.

c. Providing guidance and ability for the open-source community to contribute their own

microservices and the documentation to enable others to register their contributed

services and any type of meta-information their registry entries should contain.

3.2.8 TDEI-Developed Microservices

Some of the Data Life Cycle functions will be specific to the TDEI and require the development

team and/or partnering development teams to build out these capabilities. Provided below are the

fundamental services that will provide the functional capacities responsive to the system

requirements of the TDEI.

3.2.8.1 Microservice: Data Validators for All TDEI Data Schemas

Data Schema validators will be featured as standalone microservices offered by the TDEI for

each of the Data schemas stored by the infrastructure. (**)

3.2.8.2 Microservice: Data Collection Using Computer Vision

Pipelines

Computer Vision Pipelines are used to extract OpenSidewalks data from imagery data that is

provided by Data Service Providers. The extracted information and metadata are provided as an

output in TDEI data conforming to TDEI data specifications.

Section 2.3.2 describes an end-to-end integration of the workflow of the TDEI provided some

street-level imagery to ingest. The architecture discussion mentions a microservice application in

the embodiment of the TDEI Image/Batch Data/Mobile Data Processing Services application that

is used to collect TDEI-specification compliant data from imagery data provided by Data Service

Providers. The presumption is that the DSP’s do not wish to share their imagery data, and that

the computer vision pipelines are provided as a microservice application to the DSPs to run in-

house, with the choice to run these algorithms without exposing any of the proprietary imagery

data to the outside world. There is an option to share some sanitized imagery for validation

purposes only.

The computer vision pipeline is functionalized as a microservice using machine learning (ML) built

by the Taskar Center for Accessible Technology, used to analyze imagery data to extract

vectorized travel path information. The TDEI project must still harden this pipeline, associate the

pipeline with an API and API Gateway, and ensure that the microservice can run on remote

systems. In the TDEI instance, the computer vision services are used for data collection and data

updates. As the pipeline is encapsulated in a microservice that has an API, and an API gateway

layer. The backend runs a machine learning model. The model makes calculations, predictions,

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

58 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

and inferences, returning output that can be used for transportation layers in built environments or

transit facilities (depending on which instance is discussed and the input data type). The pipeline

either creates new sections of the transportation layer or can be used to update existing layers of

the transportation layer. It is also responsible for ensuring compliance with the appropriate TDEI

data schema. Once this pipeline produces new data, additional data cleaning, validation and

verification operations are triggered, as was already described in Section 2.3.2.

The technology pipeline itself automates the process of using ML models for complex decision-

making and is created as an open-source backend pipeline. The key to integrating the pipeline

into the TDEI is to build additional services and layers (as described in Microservices

Architecture: Enabling Data Collection, Aggregation, Integration and Transformation) to enable a

full life cycle management approach to the ML pipeline based on DevOps techniques. This

includes adding services that coordinate among the Data Service Provider (who provides the

data) and the Taskar Center development team (who build, train, evaluate, and deploy the

machine learning models).

Machine learning inference pipelines are run on images (either batch or real-time) from Data

Service Providers (may consist of Microsoft, Google, or Coco Robotics). The ML models are run

to infer a transportation layer data in the OpenSidewalks format. Cached imagery streams are

optionally used for auditing purposes and to retrain the models. The machine learning pipeline

itself depends on the specific use case for the TDEI. While out of scope for the ITS4US

Deployment Project, we would like our current microservices and API breakouts to enable three

use cases for data extraction and we will ensure that our implementation would be able to extend

to handle these instances in the future:

OpenSidewalks data extraction from multi-viewpoint (mostly satellite) imagery: Computer Vision

pipeline to collect OpenSidewalks data (vectorized data model for the built environment and right

of way) using multiple image sources including- satellite imagery, oblique aerial imagery, map

tiles, digital elevation model, mobile GPS traces (if available)

OpenSidewalks data extraction from Street-level viewpoint imagery: Computer Vision pipeline to

collect OpenSidewalks data (vectorized data model for the built environment and right of way)

using multiple image sources including- Street-level sidewalk imagery (for instance, collected by a

sidewalk delivery robot), map tiles, digital elevation model.

GTFS-Pathways from LiDAR 3D point cloud imagery: Computer Vision pipeline to collect GTFS-

Pathway’s data (vectorized data model for transit facilities) using 3D point cloud or other LiDAR

collection, along with any RGB-D or RGB data (if available)

Note: in Phase II and III of the ITS4US project, our architecture describes a human-in-the-loop

approach, in which people are notified to intervene at certain steps in the automation. The human

intervention become part of the intelligence captured by the models, creating a continuous cycle

of training, testing, tuning, and validating the machine learning algorithms. This is necessary due

to the acknowledged level of readiness of these enabling technology artifacts.

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 59

3.3 Using Event Streaming in the Context of

Microservices Architecture

3.3.1 What Questions Remain Gaps in Knowledge for the Team in

Implementing and Deploying This Enabling Technology?

From the TDEI perspective, there is one primary concern in using event streams- it is in

identifying the message broker we use. A corollary to this question would be in choosing how to

structure the event streams (“topics” as defined below) in a way to seamlessly apply it to the

microservices architecture, (a) evaluating the benefits/detriments of using specific topics or more

generalized topics for implementing and standardizing the microservices architecture and (b)

taking careful consideration to designing the microservices, determining how they are decoupled

and separated if each microservice is to truly have separate data access and view of the data

stores, and if we strictly adhere to ‘no data sharing allowed’ among microservices.

3.3.2 What Are the Evaluation Steps to Follow for Each Question?

With microservices communicating via event streams, we can build a reliable platform to extend

and grow while taking advantage of scalability and extensibility of the data schemas and types we

intend to handle. An event is a particular activity your software system is doing. An example might

be collecting temperature and humidity data. An event stream is an organization of similar events

in chronological order. So, the temperature and humidity measures could be captured every

minute of every day, and presented (organized) chronologically in an event stream, along with the

time and date each measurement was taken.

A “topic” is a categorization of events of a related nature into a single stream. So event data about

wind speed might be included in a separate event stream from the temperature and humidity

data. The event stream containing wind data would be one topic, and the temperature and

humidity data would be another.

In the TDEI, topics will define the interactions among the microservices and the message brokers

the TDEI uses. Furthermore, we must ensure that there is compatibility between the microservice

architecture and the open-source message broker we choose to use. Ultimately, we want the

topics we design into the system to be both necessary and sufficient, and to ensure viability of

these topics (namely, that microservices can connect to one or more topics. They can publish

new events. They can consume the events. Events can also be simple notifications of actions that

have been taken by the system, or they can carry state changes, allowing each microservice to

maintain its own dataset.

The goal is to not be overrun by the constraints we create when defining the message streams

and have the TDEI powered by resulting applications that are decoupled from one another and

communicating effectively through event streams, passing data around asynchronously. We must

avoid the indirection of one service calling another, that calls another. In this TRL extension, we

are tasked with designing the communication topics through which the microservices will publish

and listen to topics.

Importantly, we will need to establish additional criteria when evaluating the event stream design

and the asynchronous messaging among the microservices. Specifically, we will want:

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

60 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

• Messages to be ordered chronologically

• Message delivery should be guaranteed. (all microservices should have an accurate

picture of the system at large)

• Durability

• Resilience

• Latency kept to a minimum.

The system must also avoid outages as much as possible and have mechanisms that quickly

recover from those failures when they do occur, including preventing (if possible) and minimizing

(when necessary), data loss or service degradation.

Here we describe an eight-step process we will take to generate and evaluate the necessity,

sufficiency, and viability of each event stream topic we define. The process extracts services and

their associated needed topics progressively. This process allows us the iterative evaluation of

whether a particular defined microservice provides the right functional encapsulation before fully

committing to it because we will not create the microservice implementation or send production

traffic until we have iterated through most of the priority use cases for the TDEI system. Below

are the eight steps:

Step 1: Add Producer Logic

The entire process revolves around a dummy monolith application that roughly does what the

TDEI interoperable data sharing server and data integration server would do. We start by

providing access to data in the new extracted microservice, so the first step is to use the

dummy monolith to push that data into the message event bus producer within the dummy

monolith.

Step 2: Consume the Stream into the Database

To accept the data being produced in Step 1, a data store must be prepared. The data store

keeps our service decoupled from the rest of the TDEI ecosystem. This new microservice

contains both a consumer and the data store, allowing local access to state. To ensure that

the data needed by requests to the microservice, it may be necessary to pre-load the data

store with historical data.

Step 3: Test the Consumer

To ensure that the microservice functions as intended, we must perform validation testing. This

ensures that the microservice is correctly processing the events without errors. Tests must also

be performed to ensure that the consumer in the microservice is able to keep up with the data

being added to the event stream. Event streams are designed such that consumers can get

behind for a period of time – so our prototype will have to persist events for a period of time (on

some event buses, like Kafka, the longevity of the events is user defined). We want to ensure that

there is no data loss, and the tradeoff is that sometimes services end up with an out-of-date view

of the data. An additional attribute of the event stream that needs to be evaluated is whether the

chosen streaming technology acts as a buffer when the system is under high load. It is worthwhile

to take time in this step to understand and prepare for scenarios where data consumers get

behind.

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 61

Step 4: Determine the Logic Needed in the Microservice

In this step, we will extract the relevant functionality from the prototype monolith into the new

microservice application. We will then test that it works in isolation, by manually executing

procedures / API calls. We will need to validate that it is reading from the new data store within

the microservice, without the need to process API calls to the data producer. It’s important to test

event triggers, but also be certain that we do not have any unintended consequences that impact

other microservices that might be using the same event streams.

Step 5: Add, Test, and Consume Event Triggers

In this step, we add unit tests and take steps towards fully implementing API call producers for

events. Different event streaming platforms provide capabilities to automate checks that events

are streamed and triggered, as well as ensuring the events are flowing through. Once those are

tested, we will add consumers to the service which will process these events, executing the

relevant procedures within the service.

Step 6: Send Events Back from the Microservice

If a step is needed to communicate back to the monolith, we will need to add producers in the

new microservice and consumers in the monolith to handle this.

Step 7: Test Microservice Events

At this point we can activate and test the new microservice with a test account (or user) and

evaluate whether the actions desired from the microservice occur as desired and whether the

dummy prototype monolith continues to operate as expected.

Step 8: Finally, Remove Deprecated Logic from Monolith

In this step, we can ramp-up the microservice usage along with the associated event stream

topics. Once all accounts are using the new service, we can remove the functionality altogether

from the dummy monolith and make the new microservice and its associated topic streams the

default code path. Likewise, any logic still being used in the dummy monolith can be removed

from the monolith.

These steps are intended to allow for a safe and thoughtful creation of topics that are tied to real

use cases of the TDEI infrastructure. Ultimately, in this instance, too, the decisions will depend on

the current knowledge of our development team and the ability to take into view multiple use

cases of the TDEI. This effort will be led by the Data Management Architect and Lead, with

support from the Technical Applications Lead and the Deployment Development Lead.

3.3.3 How Will You Evaluate the ET TRL in the Context of the

Conditions for Your Project and Site?

We will take the previously performed details all our known use cases for the TDEI (for all three

data standards) and their applied priorities.

We will spend eight additional weeks following the eight-step iterative process described above.

We will spend three additional weeks elevating the prototypes we had built into nearly functional

prototypes so we can evaluate this functionality with some downstream data consumers (for

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

62 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

instance, with a consumer app like AccessMap Multimodal or with a producer tenant app like

Common Paths). This experience will provide us with actionable modification and data to

evaluate the design choices we had made.

3.3.4 Which Team Members or Roles Will You Engage in This

Investigation

Specifically, this effort will be led by the Data Management Architect and Lead, with support from

the Deployment Development Lead and the Technical Application Lead.

3.3.5 How Will You Avoid Potential Bias of Your Group, Which

Could Influence TRL Results?

We believe that using on-the-ground use cases and the real data we have had the privilege of

having will help us avoid bias. We will also conduct a hypothetical discussion of how we may

extend this infrastructure to support additional prioritized data schemas, such as supporting

bicycle and micromobility data types. However, in the case of event buses and event streaming, it

seems that many enterprise applications continuously add new topics. The most important

endeavor in removing bias here will depend on the degree of flexibility and scalability we can

maintain in the event bus, while still producing a functional instance for the deployment projects.

3.3.6 How Will You Ensure the Data You Use for the TRL Results

Are Valid and Current?

We are fortunate to be a trusted partner to many organizations and institutions who have shared

and continue to share data with us. They keep us up to date. Additionally, the device end-users

are the best validity checks on our data. We maintain our data as up-to-date as we can to allow

our application users to benefit from the use of the data.

3.3.7 Will Your Process Require the Reevaluation of the TRL

Results in a Later Time in the Project to Support Future

Phase 2 and 3 Documents?

Our deployment projects as well as TDEI tenant clients will provide the most informative

evaluation of the outcomes of building this communication, messaging, and concurrency effort.

3.4 Using APIs and API Gateways in the Context of

Microservices Architecture

3.4.1 What Questions Remain Gaps in Knowledge for the Team in

Implementing and Deploying This Enabling Technology?

From the TDEI perspective, there is one primary concern in using APIs and API Gateways- it is in

identifying where we use “off the shelf” API management and where we build our own. An

additional, often controversial, question has to do with API governance. In a previous paragraph,

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 63

we discussed some of the concerns and institutional solutions offered by other organizations in

managing this aspect of producing APIs and API gateways. We will want to advance the idea that

the TDEI APIs need to be sustainable and extensible and therefore we must (a) evaluate the

benefits/detriments of using certain specific API calls with typed payloads versus more

generalized API calls (b) taking careful consideration to design the API calls in a way that

matches the use cases we addressed in 3.1.1 and 3.1.2 and that the API calls are sufficiently

decoupled and separated if each producer and consumer is to truly have separate data access

and view data stores in both overlapping and non-overlapping regions.

3.4.2 What Are the Evaluation Steps to Follow for Each Question?

These steps allow for a safe and thoughtful creation of API and API-Gateway interactions that are

tied to real use cases of the TDEI infrastructure. Ultimately, APIs are the most visible mechanism

for all our stakeholders to interact with the TDEI, so there are high stakes in the decisions made

with respect to safeguarding the TDEI data and providing the services stakeholders require. It

would be a good idea to reach beyond our development team and engage our partners and

stakeholders in the evaluation of the API creation and governance.

The steps we follow in evaluating the API Gateway solutions need to be tied to the purpose of

having that gateway in the first place: the implementation must accelerate, govern, secure, and

provide a seamless experience to engage with our microservices-architecture based system.

As noted above, there are multiple options for open-source API Gateway solutions and we will

need to ensure that our solution offers the right kind of support not only for our data schemas and

data ingest protocols, but also for caching and traffic management, for monitoring API and service

usage, provide adequate content vetting and filtering, and importantly, the security needed in

authenticating users and understanding their roles with respect to the data.

3.4.3 How Will You Evaluate the ET TRL in Context of the

Conditions for Your Project and Site?

The API Gateway’s main purpose is to provide the “First Line of Defense” by filtering out

malformed message, query bombs, Denial of service attacks, data injection, or other breaches

from external consumers. We will have to unit test all of these functionalities. We may want to do

this first in the dummy monolith version, and then in the API designed (much as suggested in the

prior step evaluating the event streaming technology).

Many API gateways can virtualize web services location, thereby hiding their real location and

implementation details from its external consumers keeping it safe from attacks. Many API

Gateway provides have numerous inbuilt Out-of-the-Box functionalities that we can implement

and evaluate at this step, as we attempt to filter threatening external messages. This is also the

opportunity to test load and throttling of inbound message flow which we are likely to deploy with

an out of the box solution.

3.4.4 Which Team Members or Roles Will You Engage in This

Investigation?

Specifically, this effort will be led by the Data Management Lead, with support the Deployment

Development Lead and the Technical Application Lead.

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

64 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

3.4.5 How Will You Evaluate the ET TRL in Context of the

Conditions for Your Project and Site?

The API Gateway’s main purpose is to provide the “First Line of Defense” by filtering out

malformed message, query bombs, Denial of service attacks, data injection, or other breaches

from external consumers. We will have to unit test all of these functionalities. We may want to do

this first in the dummy monolith version, and then in the API designed (much as suggested in the

prior step evaluating the event streaming technology).

Many API gateways can virtualize web services location, thereby hiding their real location and

implementation details from its external consumers keeping it safe from attacks. Many API

Gateway provides have numerous inbuilt Out-of-the-Box functionalities that we can implement

and evaluate at this step, as we attempt to filter threatening external messages. This is also the

opportunity to test load and throttling of inbound message flow which we are likely to deploy with

an out of the box solution.

3.4.6 How Will You Avoid Potential Bias of Your Group, Which

Could Influence TRL Results?

We believe that using on-the-ground use cases and the real data we have had the privilege of

having will help us avoid bias. We are also privileged to be part of two communities that are

integral to this conversation, and we can engage these two groups in outside discussions,

probing and critiquing our APIs and approach to the TDEI data infrastructure. The two

communities are MobilityData.org (a non-profit international organization specifically engaging)

and Mobility Data Interoperability Principles (a community of co-authors that recently published

with us the White Paper and Principles by the same title. The web home for the principles can be

found here: www.interoperablemobility.org). Both these communities will be instrumental in

providing the diverse views of mobility service providers (transit agencies and other companies

who provide rides), transportation technology companies (software or hardware vendors),

research institutions, transportation system managers (DOTs and other regulators of

transportation infrastructure), and the public.

3.4.7 How Will You Ensure the Data You Use for the TRL Results

Are Valid and Current?

We are fortunate to be a trusted partner to many organizations and institutions who have shared

and continue to share data with us. They keep us up to date. In the case of the APIs, the

communities of practice mentioned in the previous section are the best validation for our APIs and

their usability and relevance.

3.4.8 Will Your Process Require the Reevaluation of the TRL

Results in a Later Time in the Project to Support Future

Phase 2 and 3 Documents?

Our deployment projects as well as TDEI tenant clients will provide the most informative

evaluation of the outcomes of building this API Endpoint effort.

https://d.docs.live.net/7462cc9319fc0085/TDEI-shared/MobilityData.org
http://www.interoperablemobility.org/

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 65

3.5 TRL Ratings for Inventoried Enabling Technologies

In this section, we follow the same order for each enabling technology from section 2.2 Enabling

Technologies Inventory, and provide a detailed Technology Readiness Assessment (TRA) per the

Framework introduced in Section 2.1. We intend to provide enough information to justify the

Technology Readiness Level we establish at this time, and also highlight the remaining needs

and path forward for each enabling technology that is required specifically in the development of

the TDEI infrastructure.

3.5.1 TRA: Microservice Architecture

Table 10 Technology readiness assessment (TRA) for 2.2.1 Microservices Architecture:

Enabling Data Collection, Aggregation, Integration and Transformation

Process: In the TRL tables, each row assesses the technology under consideration per

a specific Technology Readiness Level. We will specify the TRL Name and Description,

and then state its requirements along with our response to the requirements regarding

the technology under evaluation.

Tech Readiness Level 1 Basic principles and research

• Do basic scientific principles support the concept?

Yes, we are learning from the experiences of thousands of companies (such as Netflix and

Capital One) and projects. The experience of others makes is clear to our team that for the

TDEI to create a sustainable data interoperability infrastructure, requires creating a non-

monolith architecture. Moreover, the concept of Microservices has been tried and proven in

this context.

• Has the technology development methodology or approach been developed?

Yes, the technology has been developed and is currently on offer both as an architectural

paradigm, through open-source projects, as well as available as pre-programmed templates

for purchase through large cloud infrastructure and data vendors like Microsoft Azure,

Amazon AWS, etc.

Tech Readiness Level 2 Application formulated

• Are potential system applications identified?

Yes, many organizations have deployed this strategy. From the TDEI perspective, there

are two primary considerations in choosing how to apply the microservices architecture (a)

evaluating the benefits/detriments of using specific languages for implementing the

microservices architecture (b) careful consideration of the microservice separated from

each other ensuring decoupling and no-shared data access.

For these two considerations, we intend to apply the criteria described below. These

criteria are taken in large part from a Clarion Technologies web site designed to help

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

66 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

Process: In the TRL tables, each row assesses the technology under consideration per

a specific Technology Readiness Level. We will specify the TRL Name and Description,

and then state its requirements along with our response to the requirements regarding

the technology under evaluation.

explain what Microservices architectures are, and what languages are well suited for use in

those architectures.27

Choosing Technologies for Use in Microservices

Microservices, can be built using a variety of programming languages. Different

technologies or languages can be used for different microservices. One downside of

using multiple languages is that using diverse programming languages can raise the

performance overhead, and microservice architectures often already have considerable

operational overhead. Standardizing the technology stack used can limit that outcome.

As for any specific platform to deploy. Common thought is that it is not recommended to

start microservices architecture from scratch since it is difficult to define the boundaries

of each service at the beginning. There is no better way to choose the perfect

microservices breakdown other than outlining the use cases TDEI wishes to address

and come to a deep understanding of what tools and modularization will be best for our

microservices. Ultimately, technology decisions will also depend on the current

knowledge of our development team.

Common languages used when building microservices architecture, and their attributes,

are given below. The five languages described below not the only technology options.

However, they are excellent examples of the fact that the current state of the practice

supports the microservice architecture choice.

Java

A quick examination of material posted by software firms that support microservices

shows that all support use of Java for microservices. Jetbrain’s annual survey28 of

developers reports that more survey respondents use Java (41 percent) than any other

language. Java is recommended for a variety of reasons, including the following:

• The approach for placing annotations in Java is particularly easy to read, making it

developer friendly.

27 https://www.clariontech.com/blog/5-best-technologies-to-build-microservices-architecture

28 https://www.jetbrains.com/lp/devecosystem-

2021/microservices/#:~:text=Primary%20languages%20among%20microservices%20developers

&text=The%203%20most%20popular%20languages,%2C%20and%20Python%20(25%25).

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 67

Process: In the TRL tables, each row assesses the technology under consideration per

a specific Technology Readiness Level. We will specify the TRL Name and Description,

and then state its requirements along with our response to the requirements regarding

the technology under evaluation.

• The Java Platform Enterprise Edition (EE), the current edition aimed at large

distributed enterprise or Internet environments29 comes with considerable functionality

that is specifically designed to support microservices architectures. Some of this

functionality includes:

o JAX-RS is an annotation driven JAVA API designed to make development of Web
services more straightforward and intuitive,

o JPA is a specification that lets a developer define which objects should persist and
how they persist,

o CDI (Contexts and Dependency Injection) is a Java EE feature that helps knit the
web tier and the transactional tier within the Java EE platform.

o A number of service discovery solutions have been built that support connection of
microservices, including Consul, Netflix Eureka or Amalgam8.30

• Several frameworks exist for Java for developing microservices. These frameworks

make work easier and faster, as well as helping simplify the configuration and setup

process. They also help with communication between microservices. Among these

frameworks are:

o Spring Boot – This framework works on top of various languages for Aspect-
Oriented programming, Inversion of Control and other functionality.31

o Dropwizard – This Java microservices framework for developing ops-friendly, high-
performance, RESTful web services32 and that helps assemble libraries of Java into
a simple and light-weight packages.

o Restlet – helps Java developers build better web APIs that follow the REST
architecture style.33

o Spark – a microframework for creating web applications in Kotlin and Java 8 with
minimal effort.34

29 "Java Platform, Enterprise Edition (Java EE)". Oracle Technology Network. Oracle. Archived from

the original on December 17, 2014. Retrieved December 18, 2014.

30 https://stackoverflow.com/questions/13047807/why-use-cdi-in-java-ee

31 https://spring.io/

32 https://www.dropwizard.io/en/latest/

33 https://restlet.talend.com/

34 https://sparkjava.com/

https://www.oracle.com/technetwork/java/javaee/overview/index.html
https://web.archive.org/web/20141217155326/http:/www.oracle.com/technetwork/java/javaee/overview/index.html

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

68 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

Process: In the TRL tables, each row assesses the technology under consideration per

a specific Technology Readiness Level. We will specify the TRL Name and Description,

and then state its requirements along with our response to the requirements regarding

the technology under evaluation.

Go / Golang

Go, also known as Golang because of its original domain name, is a statically typed,

compiled high-level programming language designed at Google.35 Go is considered to

be easy for code writing, has a high level of security, a high execution speed, and a law

entry threshold.36 It is also popular for its concurrency and API support, resulting in

productivity of various machines and cores. Web reviews also recommend Go because

its simple syntax and excellent testing support.

As with Java, Go has a wide range of libraries available to simplify and speed coding.

Examples libraries are:

• Gizmo37 – a toolkit that simplify providing packages of PubSub daemons which

asynchronously exchange messages in real time.

• Go Kit38 – which provides support for infrastructure integration, Remote Procedures

Call (RPC) safety, system observability and program design.

• GoMicro39 – which is an RPC framework which supports load balancing, server

packages, PRC clients, and message encoding.

• Kite40 – an RPC library that helps a developer write distributed systems.

These frameworks all have specific advantages or limitations. For example, one major

difference between Go Kit and GoMicro is that Go Kit must be imported into a binary

package. However, it is more advanced for explicit dependencies, domain-driven design,

and declarative aspect compositions.

35 Kincaid, Jason (November 10, 2009). "Google's Go: A New Programming Language That's

Python Meets C++". TechCrunch. Retrieved January 18, 2010.

36 https://surf.dev/why-golang-with-microservices/

37 https://github.com/NYTimes/gizmo

38 https://gokit.io/

39 https://github.com/go-micro/go-micro

40 https://github.com/koding/kite

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 69

Process: In the TRL tables, each row assesses the technology under consideration per

a specific Technology Readiness Level. We will specify the TRL Name and Description,

and then state its requirements along with our response to the requirements regarding

the technology under evaluation.

Python

Python is a high-level, general-purpose programming language. It offers active support

for integration with various technologies. Python allows developers to quickly write

application code, plug in boilerplate functions and test the programs before converting

them to script. Python is also a strongly typed language, meaning it ensures uniform

consistency and minimizes errors by enforcing data types.41 Python is specifically

recommended for use in microservice architectures for a variety of reasons including the

following:

• Python's advanced scripting capabilities also allow developers to automate systems

provisioning and configurations for microservices.

• Python's standard library is augmented by thousands of third-party libraries for writing

REST services.

• Python provides strong support for containers.

• Prototyping with Python can be easier and quicker than in other languages.42

• Python is compatible with legacy languages like ASP and PHP that help create web

service front-ends to host Microservices.20

Python provides a broad range of microservices frameworks. Among the framework

choices are:

• Flask - is used for developing web applications and is implemented on Werkzeug and

Jinja2.43 It is lightweight, supports secure cookies, and has a built-in development

server and fast debugger, and support for unit testing is built-in. 44

41 https://www.techtarget.com/searchapparchitecture/tip/How-viable-is-it-to-create-microservices-

in-Python

42 https://dzone.com/articles/is-python-effective-for-microservice-architecture

43 https://www.analyticsvidhya.com/blog/2021/10/easy-introduction-to-flask-framework-for-

beginners/

44 https://flask.palletsprojects.com/en/2.2.x/

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

70 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

Process: In the TRL tables, each row assesses the technology under consideration per

a specific Technology Readiness Level. We will specify the TRL Name and Description,

and then state its requirements along with our response to the requirements regarding

the technology under evaluation.

• Falcon – is a high-performance web framework for building a REST API and micro-

services in Python.45 Falcon allows the creation of smart proxies, cloud APIs and app

back-ends.

• Bottle - is a fast, simple and lightweight web service gateway interface micro web-

framework.46

• Nameko - comes with built-in support for: RPC over Advanced Message Queuing

Protocol (AMQP) and Asynchronous events (pub-sub) over AMQP.47 It is designed to

quickly build a service that can respond to RPC messages, dispatch events on certain

actions, and listen to events from other services. It could also have HTTP interfaces for

clients that can’t speak AMQP, and a websocket interface for, say, Javascript clients.

• CherryPy – is a pythonic, object-oriented web framework. It allows developers to build

web applications in much the same way they would build any other object-oriented

Python program. This results in smaller source code developed in less time.48

Node JS

Node.js is a cross-platform, open-source server environment that can run on multiple

operating systems. It is a back-end JavaScript runtime environment, runs on the V8

JavaScript Engine, and executes JavaScript code outside a web browser.49 The runtime

is intended for use outside of a browser context (i.e. running directly on a computer or

server OS). As such, the environment omits browser-specific JavaScript APIs and adds

support for more traditional OS APIs including HTTP and file system libraries.50

The main Node.js web site51 states that “Node.js is great for decoupled applications as

you can use lots of npm modules to sew up a great microservice. Node.js is fast and its

45 https://phrase.com/blog/posts/falcon-python-i18n/

46 https://bottlepy.org/docs/dev/

47 https://nameko.readthedocs.io/en/stable/what_is_nameko.html

48 https://docs.cherrypy.dev/en/latest/

49 https://en.wikipedia.org/wiki/Node.js

50 Mozilla Developer Platform: https://developer.mozilla.org/en-US/docs/Learn/Server-

side/Express_nodejs/Introduction

51 https://nodejs.org/en/about

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 71

Process: In the TRL tables, each row assesses the technology under consideration per

a specific Technology Readiness Level. We will specify the TRL Name and Description,

and then state its requirements along with our response to the requirements regarding

the technology under evaluation.

event-based nature makes it a great choice even for real-time applications.” It also

states that “many connections can be handled concurrently. Upon each connection, the

callback is fired, but if there is no work to be done, Node.js will sleep” making the system

more efficient than many other types of concurrency models.

Node.js also has a large database of JavaScript modules that simplify and speed up

application development, and as with the other languages examined, Node.js has

multiple frameworks that can be accessed and used. Three examples include:

• Express - is a minimal and flexible Node.js web application framework that provides a

robust set of features for web and mobile applications.52

• Sail – is an open source model-view-controller web application framework developed

under the MIT license designed to make it easy to build enterprise-grade software53

• Hapi – is a framework used to build scalable web applications including Application

Programming Interface servers, HTTP-proxy applications, and websites.54

.Net

ASP.NET is an open-source web framework created by Microsoft and derived from .NET

used for building modern web applications. It is specifically adapted for writing backends

for web pages and web applications. Developers can use the same tools, libraries, and

infrastructure to build web and desktop projects. One reason for using .NET is in its

simplicity. You can quickly comply with the outfit, use library components, and manage

framework classes.55

Microsoft states that ASP.NET “makes it easy to create the APIs that become your

microservices. ASP.NET comes with built-in support for developing and deploying your

microservices using Docker containers. .NET includes APIs to easily consume

microservices from any application you build, including mobile, desktop, games, web,

52 https://expressjs.com/

53 https://sailsjs.com/

54 https://www.section.io/engineering-education/introduction-to-hapi/

55 https://jelvix.com/blog/asp-net-vs-asp-net-core

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

72 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

Process: In the TRL tables, each row assesses the technology under consideration per

a specific Technology Readiness Level. We will specify the TRL Name and Description,

and then state its requirements along with our response to the requirements regarding

the technology under evaluation.

and more. You can find the official Docker images for .NET on DockerHub, meaning the

initial setup is done and you can focus on building your microservices.”56

.NET can be used with other technology stacks. It allows a mix of technologies between

each service, allowing it to be used for some aspects of a larger application but not for

all components of that application. For example, .NET microservices can be mixed with

those written in any of the other options described earlier in this section.

• Are system components and the user interface at least partly described?

Yes, all architectural components are fully described. In particular, the architectural

paradigm we intend to use is frequently used in industry. It is described below this

table.

• Do preliminary analyses or experiments confirm that the application might meet the

user need?

Yes, Microservices architecture has become omnipresent in software and mobile app

development. This model is helping developers to address multiple diverse stakeholders

needs, scale and extend their applications without having to refactor or rebuild code each time.

The architecture has been transformative in cloud application development. The TDEI small

team can specifically benefit from the modular nature of building out microservices.

Tech Readiness Level 3 Proof of concept

• Are system performance metrics established?

System performance metrics are not necessarily established for microservice architectures

because the performance of the architecture is entirely a function of the tasks being

performed. However, there are criteria that are recognized as being important for selecting

between open-source solutions that must be integrated together. Following these criteria,

the TDEI will have to evaluate the following:

• Data producer/consumer-first approach (including device end-users, app developers,

and analytics)

• Programming language based on ease of use to their developers

• Ability to be independently deployed

• Ability to support automation

• Decentralization of components

56 https://dotnet.microsoft.com/en-us/apps/aspnet/microservices#

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 73

Process: In the TRL tables, each row assesses the technology under consideration per

a specific Technology Readiness Level. We will specify the TRL Name and Description,

and then state its requirements along with our response to the requirements regarding

the technology under evaluation.

• Support for continuous integration

As noted above, many frameworks, versions, and tools can support the development of

Microservices. Java, Python, C++, Node JS, and .Net are exemplars.

Ease of Management

In the instructional material Microsoft provides on microservice gateways,57 it is recommended

that when services are updated or new services are added, the gateway routing rules may

need to be updated. The TDEI will have to consider how updates to services will be managed.

The TDEI expects to apply these same management approaches for SSL certificates, IP allow

lists, and other aspects of configuration.

• Is system feasibility fully established?

Yes, we believe the hard part would be to select the system subdivisions that are the best

fit for our system and team constraints and maintain microservices separate.

• Do experiments or modeling and simulation validate performance predictions of system

capability?

There are current system deployments that allow us to make rough predictions. We are

in the process of prototyping with some of these tools to assess how well they may fit

with our project.

• Does the technology address a need or introduce an innovation in the field of

transportation?

We do not know of other implementations in the field directly, although ride hail companies or

micromobility companies may be working with similar infrastructure, though it is not open, nor

does it produce shareable data.

Tech Readiness Level 4 Components validated in a laboratory environment

• Are end-user requirements documented?

Yes, due to the numerous industry operators in this space, multiple stakeholder needs

have been observed and documented, although not necessarily in the transportation or

accessibility domains.

• Does a plausible draft integration plan exist, and is the technology’s compatibility

demonstrated?

57 https://learn.microsoft.com/en-us/azure/architecture/microservices/design/gateway

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

74 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

Process: In the TRL tables, each row assesses the technology under consideration per

a specific Technology Readiness Level. We will specify the TRL Name and Description,

and then state its requirements along with our response to the requirements regarding

the technology under evaluation.

Please see figures below for a draft integration plan modelled after often-used

deployments of these enabling technologies.

• Were individual components successfully tested in a laboratory environment (a fully

controlled test environment where a limited number of critical functions are tested)?

Individual components are tested and in use daily in industry. In our laboratory, we are in

the process of implementing prototype integrations.

Tech Readiness Level 5 Integrated components demonstrated in a laboratory

environment

• Are external and internal system interfaces documented?

External system interfaces and documented. Some are actual turnkey system deployments

that allow us to use them off the shelf until we have the capacity to tune them to our

specific TDEI needs.

• Are target and minimum operational requirements developed?

Yes, these will be aligned or exceed the requirements identified in the Systems

Requirements documents for the TDEI.

• Is component integration demonstrated in a laboratory environment (i.e., fully controlled

setting)?

Integration of these components has been demonstrated both in controlled environments

and in the wild.

Based on the Technology Readiness Framework introduced by the FHWA Technology Readiness

Level Guidebook, we followed the procedure above and conclude that Microservices Architecture

technologies are at readiness level 5 but requires significant architecture planning efforts in order

to gain the most benefit from use of this technology.

Additional Notes: Assessing the use of Microservices and how we may decouple microservices

required us to investigate actual architectures that currently use these technologies in other data

service system. This resulted in some of the comparisons that were drawn above.

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 75

3.5.2 TRA: Using Event Streams in the Context of Microservices

Architecture

Table 11 Technology readiness assessment (TRA) for 2.2.1 Microservices Architecture:

Enabling Data Collection, Aggregation, Integration and Transformation with APIs and API

Gateways

Process: In the TRL tables, each row assesses the technology under consideration per

a specific Technology Readiness Level. We will specify the TRL Name and Description,

and then state its requirements along with our response to the requirements regarding

the technology under evaluation.

Tech Readiness Level 1 Basic principles and research

• Do basic scientific principles support the concept?

• Event Streams were discussed earlier for their importance in removing the

complexity of point-to-point communication among disparate part of an

application by acting as a communication hub between systems.

• Has the technology development methodology or approach been developed?

• Yes, the technology has been developed and is currently on offer both as an

architectural paradigm, through open-source projects, as well as available as

pre-programmed templates for purchase through large cloud infrastructure and

data vendors like Microsoft Azure, Amazon AWS, etc.

Tech Readiness Level 2 Application formulated

• Are potential system applications identified?

Yes, the primary considerations will go to evaluating the benefits/detriments of using the

following Message Brokers:

• Apache Kafka

• Kafka in the cloud

• Apache PULSAR

• Redpanda

• Are system components and the user interface at least partly described?

Yes, all architectural components are fully described. In particular, the broker services

we intend to use are frequently used in industry. Additional criteria to compare

services are described below.

• Do preliminary analyses or experiments confirm that the application might meet the

user need?

Yes, Message Brokers have become commonplace among most data providers,

albeit not in transportation or accessibility. While we are trailblazing this development

in this industry, the components themselves are not novel. We believe the

concurrency model will really help transportation IT developers to address multiple

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

76 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

Process: In the TRL tables, each row assesses the technology under consideration per

a specific Technology Readiness Level. We will specify the TRL Name and Description,

and then state its requirements along with our response to the requirements regarding

the technology under evaluation.

diverse stakeholders needs, scale and extend their applications without having to

refactor or rebuild code each time.

Tech Readiness Level 3 Proof of concept

• Are system performance metrics established?

System performance metrics are not necessarily established, but there are message broker

features that are generally established as implementation tradeoffs. For any of the selected

open-source solutions named above, the TDEI will have to evaluate how each system

handles:

• Brokers

• Limits on the number of topics

• Cluster coordination

• Multi data center replication and offset handling

• Service discovery

• Scaling clusters

• Clients

• Reading Messages

• Reading and persisting data from external sources

• Integration with other sources

• Message query operations

• Long-term storage

• Community support and documentation

A number of companies have published comparisons of Kafka and Pulsar. These

include:

• Cloud Infrastructure Partners (https://cloudinfrastructureservices.co.uk/kafka-vs-

pulsar-whats-the-difference/)

• Digitalis (https://digitalis.io/blog/kafka/apache-kafka-vs-apache-pulsar/)

• Confluent (https://www.confluent.io/kafka-vs-pulsar/)

• StreamNative (https://streamnative.io/blog/apache-pulsar-vs-apache-kafka-2022-

benchmark)

• Macrometa (https://www.macrometa.com/event-stream-processing/kafka-alternatives)

https://cloudinfrastructureservices.co.uk/kafka-vs-pulsar-whats-the-difference/
https://cloudinfrastructureservices.co.uk/kafka-vs-pulsar-whats-the-difference/
https://digitalis.io/blog/kafka/apache-kafka-vs-apache-pulsar/
https://www.confluent.io/kafka-vs-pulsar/
https://streamnative.io/blog/apache-pulsar-vs-apache-kafka-2022-benchmark
https://streamnative.io/blog/apache-pulsar-vs-apache-kafka-2022-benchmark

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 77

Process: In the TRL tables, each row assesses the technology under consideration per

a specific Technology Readiness Level. We will specify the TRL Name and Description,

and then state its requirements along with our response to the requirements regarding

the technology under evaluation.

Redpanda is a Kafka-compatible streaming data platform that claims to be optimized for

lower latency and thus higher throughput. Consequently, comparison web sites that

cover many or all of these factors exist that compare Redpanda to Kafka. Examples of

these sites include:

• https://www.kai-waehner.de/blog/2022/11/16/when-to-choose-redpanda-instead-of-

apache-kafka/

• https://www.infoworld.com/article/3660628/review-redpanda-gives-kafka-a-run-for-its-

money.html

• https://techwithadrian.medium.com/a-closer-look-at-redpanda-37015edb0841

• https://medium.com/event-driven-utopia/real-time-streaming-for-mortals-how-

redpanda-and-materialize-making-it-a-reality-18ac0bdc6f43

• https://sourceforge.net/software/compare/Apache-Kafka-vs-Redpanda/

Each of these review articles comes to different conclusions based on the specific needs

of the system being designed and deployed. The TDEI team will need to carefully

consider the pro’s and con’s of the alternatives.

• Is system feasibility fully established?

Yes, we believe the hard part would be to select the system components that are the best

fit for our system and team constraints.

• Do experiments or modeling and simulation validate performance predictions of system

capability?

There are current system deployments that allow us to make rough predictions. We are

in the process of prototyping with some of these tools to assess how well they may fit

with our project.

• Does the technology address a need or introduce an innovation in the field of

transportation?

We do not know of other implementations in the field directly, although ride hail

companies or micromobility companies may be working with similar message brokerage.

Uber is likely to be using similar message brokerage. That infrastructure not open nor

does it produce shareable data.

Tech Readiness Level 4 Components validated in laboratory environment

• Are end-user requirements documented?

Yes, due to the numerous industry operators in this space, multiple stakeholder needs

have been observed and documented, although not necessarily in the transportation or

accessibility domains.

https://www.kai-waehner.de/blog/2022/11/16/when-to-choose-redpanda-instead-of-apache-kafka/
https://www.kai-waehner.de/blog/2022/11/16/when-to-choose-redpanda-instead-of-apache-kafka/
https://www.infoworld.com/article/3660628/review-redpanda-gives-kafka-a-run-for-its-money.html
https://www.infoworld.com/article/3660628/review-redpanda-gives-kafka-a-run-for-its-money.html
https://medium.com/event-driven-utopia/real-time-streaming-for-mortals-how-redpanda-and-materialize-making-it-a-reality-18ac0bdc6f43
https://medium.com/event-driven-utopia/real-time-streaming-for-mortals-how-redpanda-and-materialize-making-it-a-reality-18ac0bdc6f43
https://sourceforge.net/software/compare/Apache-Kafka-vs-Redpanda/

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

78 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

Process: In the TRL tables, each row assesses the technology under consideration per

a specific Technology Readiness Level. We will specify the TRL Name and Description,

and then state its requirements along with our response to the requirements regarding

the technology under evaluation.

• Does a plausible draft integration plan exist, and is component compatibility demonstrated?

Please see the sample integration plan in Section 2.3.2 for a draft integration modelled

after Azure-cloud-based deployments of message brokerage technology.

• Were individual components successfully tested in a laboratory environment (a fully

controlled test environment where a limited number of critical functions are tested)?

We have recently tested the publishing and listening to event streams in our laboratory

towards the development of a microservices architecture for the integration server. We

are in the process of implementing further prototype integrations.

Tech Readiness Level 5 Integrated components demonstrated in a laboratory

environment

• Are external and internal system interfaces documented?

External system interfaces and documented. Some are actual turnkey system deployments

that allow us to use them off the shelf until we have the capacity to tune them to our

specific TDEI needs. Please see evaluation criteria and discussion of Kafka and Pulsar

above.

• Are target and minimum operational requirements developed?

Yes, these will be aligned or exceed the requirements identified in the Systems

Requirements documents for the TDEI.

• Is component integration demonstrated in a laboratory environment (i.e., fully controlled

setting)?

Integration of these components has been demonstrated both in the controlled environment

of our lab and in the wild.

Based on the Technology Readiness Framework introduced by the FHWA Technology Readiness

Level Guidebook, we followed the procedure above and conclude that message brokerage

technologies are at readiness level 5.

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 79

3.5.3 TRA: Using APIs and API Gateway within the Context of

Microservices Architecture

Table 12 Technology readiness assessment (TRA) for 2.2.1 Microservices Architecture:

Enabling Data Collection, Aggregation, Integration and Transformation with APIs and API

Gateways

Process: In the TRL tables, each row assesses the technology under consideration per

a specific Technology Readiness Level. We will specify the TRL Name and Description,

and then state its requirements along with our response to the requirements regarding

the technology under evaluation.

Tech Readiness Level 1 Basic principles and research

• Do basic scientific principles support the concept?

Yes, we are learning from the experiences of hundreds of organizations in other industries

and their successful ongoing work within their own industries in developing and

implementing open data standards. The shift to open APIs presented a big, enabling shift

for these industries towards data sharing and data sustainability.

• Has the technology development methodology or approach been developed?

Yes, the technology has been developed and is currently on offer both as an architectural

paradigm, through open-source projects, as well as available as pre-programmed

templates for purchase through large cloud infrastructure and data vendors like Microsoft

Azure, Amazon AWS, etc.

Tech Readiness Level 2 Application formulated

• Are potential system applications identified?

Yes, the primary considerations will go to evaluating the benefits/detriments of using the

following applications. These considerations come directly from Microsoft’s Azure

documentation, designed to assist developers in choosing a gateway technology. The

following material is taken directly from that site.58

“Reverse proxy server. Nginx and HAProxy are popular reverse proxy servers that

support features such as load balancing, SSL, and layer 7 routing. They are both free,

open-source products, with paid editions that provide additional features and support

options. Nginx and HAProxy are both mature products with rich feature sets and high

performance. You can extend them with third-party modules or by writing custom scripts

in Lua. Nginx also supports a JavaScript-based scripting module referred to as NGINX

JavaScript. This module was formally named nginScript.

58 https://learn.microsoft.com/en-us/azure/architecture/microservices/design/gateway

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

80 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

Process: In the TRL tables, each row assesses the technology under consideration per

a specific Technology Readiness Level. We will specify the TRL Name and Description,

and then state its requirements along with our response to the requirements regarding

the technology under evaluation.

Service mesh ingress controller. Service meshes to consider include Linkerd or Istio. It is

important to consider the features that are provided by the ingress controller for that

service mesh. For example, the Istio ingress controller supports layer 7 routing, HTTP

redirects, retries, and other features.

Application Gateway. Application Gateway is used to manage load balancing services

that can perform layer-7 routing and SSL termination. It may also provide a web

application firewall (WAF).”

The TDEI development team has not yet identified open-source turnkey solutions for

Application Gateways, but Azure supplies its own, and one can use open-source reverse

proxy solutions and then add functionality. Additional functionality that could be

offloaded to an application gateway, and the additional off the shelf microservices to

support them:

• SSL termination

• Authentication

• IP allow/block list

• Client rate limiting (throttling)

• Logging and monitoring

• Response caching

• Web application firewall

• GZIP compression

• Servicing static content

API Management. There are plenty of open-source examples of organizations publishing APIs

to external and internal customers. These examples provide features that can be useful to the

TDEI development team for managing our public-facing APIs. For example, the team can

benefit from examples in rate limiting, IP restrictions, and authentication using identity

providers.

API Management doesn't perform any load balancing, so it should be used in conjunction with

a load balancer such as the Application Gateways described above. There are at least 20

open-source, used API Management tools to choose from, all described in this article.59 We will

have to choose from among these options.

• Are system components and the user interface at least partly described?

59 https://appinventiv.com/blog/open-source-api-management-tools/

https://appinventiv.com/blog/open-source-api-management-tools/

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 81

Process: In the TRL tables, each row assesses the technology under consideration per

a specific Technology Readiness Level. We will specify the TRL Name and Description,

and then state its requirements along with our response to the requirements regarding

the technology under evaluation.

Yes, all architectural components are fully described. In particular, the architectural

paradigm we intend to use is frequently used in industry. It is described below this

table.

• Do preliminary analyses or experiments confirm that the application might meet the

user need?

Yes, Microservices architecture and APIs have become omnipresent in software and

mobile app development. This model is helping developers to address multiple

diverse stakeholders needs, scale and extend their applications without having to

refactor or rebuild code each time. The architecture has been transformative in cloud

application development. The TDEI small team can specifically benefit from the

modular nature of building with APIs and API Layers because different teams (some

might be outside our organization) would be able to develop to the API specification.

There is also the additional benefit of protecting the data assets and interfaces via

well managed APIs and API Gateways.

Tech Readiness Level 3 Proof of concept

• Are system performance metrics established?

System performance metrics are not necessarily established, but there are performance

features that are generally established as implementation tradeoffs are being considered.

For any of the selected open-source solutions integrated together, the TDEI will have to

evaluate:

Features.

For instance, the options listed above for Application Gateways all support layer 7 routing, but

support for other features will vary. Depending on the features that we need, we may identify

different solutions that fit the needs, or we may have to deploy more than one application

gateway, depending on the API and microservices underlying them.

Ease of Deployment.

Microsoft supplies considerable documentation on its Azure architecture web site in

support of microservices deployment.60 That web site describes several ways to deploy

gateways, allowing the TDEI team to select the approach that the team can use to ease

deployment. Microsoft offers four separate approaches to deployment.

60 https://learn.microsoft.com/en-us/azure/architecture/microservices/design/gateway

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

82 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

Process: In the TRL tables, each row assesses the technology under consideration per

a specific Technology Readiness Level. We will specify the TRL Name and Description,

and then state its requirements along with our response to the requirements regarding

the technology under evaluation.

The first is “Nginx and HAProxy will typically run-in containers inside the cluster but can

also be deployed to dedicated VMs outside of the cluster. This isolates the gateway from

the rest of the workload but incurs higher management overhead.”

A second alternative recommended by Microsoft is to “deploy Nginx or HAProxy to

Kubernetes as a ReplicaSet or DaemonSet that specifies the Nginx or HAProxy

container image. We would then use a ConfigMap to store the configuration file for the

proxy, and mount the ConfigMap as a volume, and create a service of type

LoadBalancer to expose the gateway through a Load Balancer.”

A third Microsoft alternative is to “create an Ingress Controller. An Ingress Controller is a

Kubernetes resource that deploys a load balancer or reverse proxy server. Several

implementations exist, including Nginx and HAProxy. A separate resource called an

Ingress defines settings for the Ingress Controller, such as routing rules and TLS

certificates. That way, we will not need to manage complex configuration files that are

specific to a particular proxy server technology. “

A fourth option is to deploy fully managed services such as Azure Application Gateway

and API Management.

Ease of Management.

In the instructional material Microsoft provides on microservice gateways,61 it is recommended

that when services are updated or new services are added, the gateway routing rules may

need to be updated. The TDEI will have to consider how updates to services will be managed.

The TDEI expects to apply these same management approaches for SSL certificates, IP allow

lists, and other aspects of configuration.

• Is the system feasibility fully established?

Yes, we believe the hard part would be to select the system components that are the best

fit for our system and team constraints, ensure that it is secure and open source.

• Do experiments or modeling and simulation validate performance predictions of system

capability?

There are current system deployments that allow us to make rough predictions. We are

in the process of prototyping with some of these tools to assess how well they may fit

with our project.

61 https://learn.microsoft.com/en-us/azure/architecture/microservices/design/gateway

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 83

Process: In the TRL tables, each row assesses the technology under consideration per

a specific Technology Readiness Level. We will specify the TRL Name and Description,

and then state its requirements along with our response to the requirements regarding

the technology under evaluation.

• Does the technology address a need or introduce an innovation in the field of

transportation?

We do not know of other implementations in the field directly, although ride hail

companies or micromobility companies may be working with similar infrastructure,

though it is not open, nor does it necessarily produce shareable data.

Tech Readiness Level 4 Components validated in laboratory environment

• Are end-user requirements documented?

Yes, due to the numerous industry operators in this space, multiple stakeholder needs

have been observed and documented, although not necessarily in the accessibility domain.

We recently joined many transit organizations in co-authoring the Mobility Data

Interoperability Principles, and all entities acknowledged the need for standardization and

standard practices, of which API publication is one.

• Does a plausible draft integration plan exist, and is component compatibility

demonstrated?

Please see figures below for a draft integration plan modelled after often-used

deployments of these enabling technologies.

• Were individual components successfully tested in a laboratory environment (a fully

controlled test environment where a limited number of critical functions are tested)?

Individual components are tested and in use daily in industry. In our laboratory, we have

been deploying and implementing the OpenSidewalks API since 2018. We are in the

process of implementing prototype integrations.

Tech Readiness Level 5 Integrated components demonstrated in a laboratory

environment

• Are external and internal system interfaces documented?

External system interfaces and documented. Some are actual turnkey system deployments

that allow us to use them off the shelf until we have the capacity to tune them to our

specific TDEI needs.

• Are target and minimum operational requirements developed?

Yes, these will be aligned or exceed the requirements identified in the Systems

Requirements documents for the TDEI.

• Is component integration demonstrated in a laboratory environment (i.e., fully controlled

setting)?

Integration of these components has been demonstrated both in controlled environments

and in the wild.

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

84 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

Process: In the TRL tables, each row assesses the technology under consideration per

a specific Technology Readiness Level. We will specify the TRL Name and Description,

and then state its requirements along with our response to the requirements regarding

the technology under evaluation.

We believe these technologies (API and API Gateways) are at readiness level 5.

Additional Notes: Assessing the use of APIs and API gateways required us to investigate actual

architectures that currently use these technologies in other data service system. We identified

one architectural paradigm that is used in the field and fits well into fits well for the TDEI use

case.

Figure 5 shows how the integrated API architecture defines the process for running and exposing

TDEI APIs. Specifically, the initial layer has the API Portal, through which data consumers and

producers register, sign up for community messaging, access TDEI documentation, and have

access to monitoring data about the TDEI system. The API Portal is the mechanism by which

data producers, consumers, TDEI data tenants (internal and external) and all third-party data

stakeholders can access the TDEI framework for API analysis, API documentation, and to ensure

that the data interoperates with web/mobile applications. Through the development of the portal,

TDEI will define how we expose data to internal, partner, and third-party developers. Protected by

the portal layer, is the API Gateway layer where implementations include API security, data

validation, data caching, and service orchestration.

These architectural methods are widely used in the field. The diagram fits into our overall

architecture (refer to Figure 3 in the component integration; this figure is a detailed view of the

boxes labeled “API Gateway,” “Internal API Management” and “APIs for users, applications,

analytics” found in both of the “API Layer” panels). The API layer in the TDEI lends agility and

scale to the overall architecture and the ability to modify as new use cases and TDEI

stakeholders become TDEI data tenants.

The ability to decouple the analytics services and APIs from the data lake means that we can

serve parallel data schemas with very different input types and continue to scale linearly with the

data (where the data processing runs separately from the data storage and distribution/

dissemination). In this way, we can serve requests by application developers, for example, that

are real-time and allow dynamic access and are able to support many more users and

downstream applications. These practices are currently hailed as industry’s best standards for

organizations that are going to scale out the data to large numbers of users with multiple

downstream applications (see Arcadia Data testament, for example). The example provided

allows the downstream data consumption to be fully distributed and allows the TDEI to support

users making native queries on complex data sources (for instance, only sidewalks of a particular

kind in a very large region), allow for user concurrency and scalability regardless of any latencies

in data processing.

3. Technology Readiness Level (TRL)

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI| 85

Figure 5 Architecture diagram demonstrating a widely used paradigm for API Gateways

and APIs for microservices integration into a complete microservice architecture that

promotes cyber safety and data interoperability.

Based on the Technology Readiness Framework introduced by the FHWA Technology Readiness

Level Guidebook, we followed the procedure above and conclude that use of APIs and API

Gateways technologies are at readiness level 5.

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – UW TDEI | 87

4 Risk Assessment

Here we identify specific risks (e.g., performance data gaps, utilization of standards, etc.)

associated with the specific technologies, which provides a basis for quantifying those risks

through formal risk assessments.

4.1 Assessing Risk

Describe how the risk assessment was performed and criteria for defining high, medium, and low

impact. With the proliferation of services and containers, orchestrating and managing large

groups of containers quickly became one of the critical challenges.

Table 13. Risk assessment for each enabling technology

Risk

ID

Enabling

Technology

Risk Description Impact

Level

1 2.2.3 Application

Programming

Interfaces

Even with use of APIs, there remain design choices that

can be made in the deployment of APIs that can make the

use of the underlying services difficult to integrate into the

full system deployment. These challenges include:

• API resource parameters and defining them within

APIs

• API resource design workflow

• Designing and implementing API resource relations

• API actions

• API versioning

• API response pagination and metadata, filtering,

sorting, search, long-running operations, concurrency

control, conditional requests & caching, error handling,

bulk operations, file uploads

• API documenting

• API security

Medium

2 2.2.3 Application

Programming

Interfaces

Exposing an API means being exposed to cyber threats.

Providing a reliable API endpoint requires safeguarding

against application-level threats.

High

3 2.2.3 Application

Programming

Interfaces

Exposing an API means requirement to adequately route

traffic and balance load. Providing a reliable API endpoint

requires safeguarding against this issue.

High

4 2.2.4 Intermediary

API Gateway Layers

Help Integrate APIs

The API gateway is a potential bottleneck or single point of

failure in the system.

High

4. Risk Assessment

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

88 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

Risk

ID

Enabling

Technology

Risk Description Impact

Level

5 2.2.1.2 Key Enabling

Technology

Components for

Microservices:

Containers and

Orchestration

Managers

Designing disparate microservices creates challenges in

communication among these services. We intend to have

multiple tenants in the TDEI environment, each potentially

running some portion of their own microservices that suit

their data environment. The risk has to do with how these

services interact with each other and with the TDEI system.

High

6 2.2.1.2 Key Enabling

Technology

Components for

Microservices:

Containers and

Orchestration

Managers

Lossless Data Delivery: Data updates and batch upload

events initiated by the multiple tenants of the TDEI create

challenges for messaging and streaming update events,

particularly if we are to adopt the acceptable best practice

design of stateless services. State of datasets does exist,

particularly for transportation and municipal agencies,

where changes and updates will occur spontaneously

rather than on a release schedule. The services need to be

aware of these changes, and though an API call is often an

effective way of initially establishing state for a given

service, it’s not good for updates if they need to be polled

constantly (this is to say that the microservices operating

within the tenant agencies will have to send notifications to

the TDEI when they have updates, rather than the TDEI

data infrastructure constantly ‘asking’ the tenant

microservices whether they have updates).

High

7 2.2.2 Message

Streaming and

Brokering: Enable

Integration of the

Data Interoperability

Platform

Flexible topic routing Medium

8 2.2.2 Message

Streaming and

Brokering: Enable

Integration of the

Data Interoperability

Platform

Message ordering may get missed Low

9 2.2.2 Message

Streaming and

Brokering: Enable

Integration of the

Data Interoperability

Platform

Stability of the orchestration servers create a high-risk

vulnerability

High

10 2.2.2 Message

Orchestration in

cloud

Unstable life cycle in cloud High

4. Risk Assessment

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – University of Washington, TDEI | 89

4.2 Mitigating Risk

For each of the “High” impact risks identified in Section 4, we assess the likelihood of the risk

occurring (High, Medium, or Low) and describe the mitigation strategy that will be used to reduce

the risk. These risks will be tracked on an ongoing basis in the Risk Register.

Table 14. High-impact risk mitigation plans

• Risk

ID

• Risk

Probability

• Mitigation Plan

• 1 • Medium JSON:API specification is used to mitigate concerns

around API scalability, extensibility, and standardization

practices. For more information on the JSON:API

specification, please see https://jsonapi.org/.

Additionally, for guidance on other microservice APIs in

the TDEI system that support the interchangeable data

infrastructure, but are not directly serving transportation

data, we will reduce development risks through proper

API design, taking guidance from the RESTful API

Design Guide published by the Bank of Belgium found

at: https://github.com/NationalBankBelgium/REST-API-

Design-Guide/wiki. This resource provides guidance

and mechanisms for API building supporting decision

making about many of the issues named in this risk.

Finally, for handling API registration and Security- we

will be using Intermediary API Gateway Layers

technology mentioned in 2.2.4 which addresses these

concerns.

https://jsonapi.org/
https://github.com/NationalBankBelgium/REST-API-Design-Guide/wiki
https://github.com/NationalBankBelgium/REST-API-Design-Guide/wiki

4. Risk Assessment

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

90 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

• Risk

ID

• Risk

Probability

• Mitigation Plan

• 2 • High APIs will be hardened for cyber-security concerns using

API Gateways.

The gateway provides the enforcement capability that

only trusted messages (authentication and

authorization) can pass through– a control mechanism

that requires that API callers have the appropriate

identity, authentication, and security clearance.

The Gateway prevents cyber-attacks by inspecting the

messages passing through it. The Gateway provides

API firewalling to only allow legitimate messages to

enter an organization.

API Firewalling helps to mitigate against application-

level threats, such as cross-site scripting, SQL injection,

command injection, cross-site request forgery, etc. The

Gateway will detect and block threats. Additionally,

messages can be checked to see if they might contain

viruses.

The Gateway provides multiple ways for API consumers

to authenticate and get access to API resources. The

Gateway can support one of the many open standards

that means to determine the validity of an API

Consumer (i.e., OAuth, JWT tokens, API Key, HTTP

Basic/Digest, SAML, etc.) or it can use non-standard

means to locate credentials in headers or payload of

the message.

• 3 • High APIs will be hardened for risks of traffic routing and load

balancing using API Gateways.

As the Gateway sits in the line of traffic, it provides

basic load balancing and route trafficking capabilities

(Round Robin, Weighted Round Robin, random, etc.)

for traffic entering the organization. The Gateway

provides various mechanisms for managing the rate of

flow into an organization. It can protect the TDEI

backend against severe traffic spikes and denial of

service attacks. As it sits in the flow of traffic it can

provide traffic throttling and smoothing. IP addresses

can be white or blacklisted. Additionally, the Gateway

provides various failure patterns, like a circuit breaker or

retry policies, to help protect the organization from

cascading failures.

4. Risk Assessment

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – University of Washington, TDEI | 91

• Risk

ID

• Risk

Probability

• Mitigation Plan

• 4 • High To avoid having the API Gateway as the deployment

bottleneck, TDEI will deploy at least two replicas of the

gateways for high availability. If needed, we could scale

out the replicas further, depending on the load.

The gateway will be additionally run on a dedicated set

of nodes to garner the following benefits:

Isolation. All inbound traffic goes to a fixed set of

nodes, which can be isolated from backend services.

Stable configuration. If the gateway is misconfigured,

the entire application will still be available.

• Performance. Specific VM configurations for

the gateway might be better for performance

reasons.

• 5 • High • To mitigate missing updates if data is suddenly

published too fast for ingestion, and to maintain

the “Best Available Data,” it is necessary to

couple state-establishing API calls with

messaging or event streaming so that services

can broadcast changes in state and other

interested parties (i.e., APIs within the TDEI

infrastructure) can listen for those changes and

adjust accordingly. We can use a general-

purpose message broker, but we believe that in

our case, an event streaming platform, might be

a good fit to enable future integration with other

sensors and city IoT infrastructure, for example.

• 6 • High • Given current event streaming architecture and

large data volumes, achieving lossless delivery

for data pipelines is cost prohibitive in cluster

implementations (AWS EC2 or Azure).

Accounting for this, an acceptable amount of

data loss, while balancing cost. We must be

able to monitor the daily data loss rate. Metrics

are gathered for dropped messages so we can

act if needed.

• A mitigating pipeline will produce messages

asynchronously without blocking applications.

In case a message cannot be delivered after

retries, it will be dropped by the producer to

ensure the availability of the event log queue.

4. Risk Assessment

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

92 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

• Risk

ID

• Risk

Probability

• Mitigation Plan

• 7 • Medium • Flexible Message routing: Most of the

applications in Netflix use our Java client library

to produce to event streaming pipeline. On

each instance of those applications, there are

multiple producers, with each producing to a

cluster for sink level isolation. The producers

have flexible topic routing and sink

configuration which are driven via dynamic

configuration that can be changed at runtime

without having to restart the application

process. This makes it possible for things like

redirecting traffic and migrating topics across

event streaming clusters. For non-Java

applications, they can choose to send events to

REST endpoints which relay messages to

fronting clusters.

• 8 • Medium • Message ordering: For greater flexibility, the

producers do not use keyed messages.

Approximate message ordering is re-

established in the batch processing layer (in

platforms like Hive / Elasticsearch) or routing

layer for streaming consumers.

• 9 • High • Orchestration Server stability: The TDEI will put

the stability of the event streaming clusters at a

high priority because they are the gateway for

message injection. Therefore, we will not allow

client applications to directly consume from

them to make sure they have predictable load.

• 10 • High • Unpredictable cloud life cycle: In the cloud,

instances have an unpredictable life-cycle and

can be terminated at any time due to hardware

issues. Transient networking issues are

expected. These are not problems for stateless

services but pose a big challenge for a stateful

service requiring brokers and a single controller

for coordination. The TDEI will weigh the

benefits and detractors of using these brokers.

4. Risk Assessment

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – University of Washington, TDEI | 93

Appendix A. Acronyms

This appendix includes a list of acronyms used in the document.

Acronym Definition

ADA Americans with Disabilities Act

AI Artificial intelligence

AMQP Advanced Message Queuing Protocol

API Application program interface

ARNOLD All Road Network of Linear Referenced Data

ASP Application Service Provider

ATTRI Accessible Transportation Technologies Research Initiative

BAA Broad Area Announcement

CD Continuous deployment

CI Continuous integration

ConOps Concept of Operations

DOI Digital Object Identifier

DOT Department of transportation

ET Enabling technology

ETL Extract, Transform, Load

ETRA Enabling Technology Readiness Assessment

FHWA Federal Highway Administration

GIS Geographic information systems

GTFS General Transit Feed Specification

GTFS-Flex General Transit Feed Specification for flexible route services

GTFS-Pathways General Transit Feed Specification for pathways through transit

facilities

HTTP Hypertext Transfer Protocol

ICAP Internet Content Adaptation Protocol

IES-City IoT-enabled smart city

IoT Internet of things

ITS Intelligent transportation system

LEP Limited English Proficiency

LiDAR Light Detection and Ranging

ML Machine learning

.NET The brand name of a proprietary software framework developed by

Microsoft Corporation

NIST National Institute of Standards and Technology

Npm module any file or directory in the node_modules directory that can be

loaded by the Node.js require() function

4. Risk Assessment

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

94 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

Acronym Definition

OASC Open and Agile Smart Cities

OSM OpenStreetMap

PID Personal identifier

QC Quality control

REST Representational State Transfer

RPC Remote Procedures Call

SSL Secure sockets layer

SyRS System Requirements Specification

Taskar Center or TCAT Taskar Center for Accessible Technology at the University of

Washington

TCP Transmission Control Protocol

TDEI Transportation Data Equity Initiative

TRA Technology Readiness Assessment

TRAC Washington State Transportation Center at the University of

Washington

TRL Technology Readiness Level

U.S. United States

U.S. DOT United State Department of Transportation

UW University of Washington

WAF Web application firewall

4. Risk Assessment

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – University of Washington, TDEI | 95

Appendix B. References

This document utilizes information and processes defined in the following reports and web site.

Reports are noted first, with websites noted below the reports.

Reports

• Accessible Transportation Technologies Research Initiative (ATTRI) Performance Metrics

and Evaluation, Final Evaluation Framework Report, FHWA-JPO-20-784,

https://rosap.ntl.bts.gov/view/dot/50748/.

• FHWA Technology Readiness Level Guidebook

https://www.fhwa.dot.gov/publications/research/ear/17047/17047.pdf

• IES-City Framework. Available online: https://pages.nist.gov/smartcitiesarchitecture/

(accessed on 30 July 2021).

• Karpenko, A.; Kinnunen, T.; Madhikermi, M.; Robert, J.; Främling, K.; Dave, B.;

Nurminen, A. Data Exchange Interoperability in IoT Ecosystem for Smart Parking and EV

Charging. Sensors 2018, 18, 4404.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308793/ (accessed on 30 July 2021)

• The Key to Mastering Kafka Streams and ksqlDB by Mitch Seymor, ISBN-10:

1492062499, March 16, 2021

• Kincaid, Jason (November 10, 2009). "Google's Go: A New Programming Language

That's Python Meets C++". TechCrunch. Retrieved January 18, 2010.

• National Smart City Strategic Program. Available online:

https://www.smartcities.kr/about/about.do#en_intercep (accessed on 30 July 2021).

• OASC. A Guide to SynchroniCity. Available online but requires registration through:

https://www.smartcitiesworld.net/news/news/oasc-launches-guide-to-synchronicity-5089

• Phase 1 Concept of Operations (ConOps), University of Washington ITS4US Deployment

Project, FHWA-JPO-21-861, https://rosap.ntl.bts.gov/view/dot/58675

• Phase 1 System Requirements Specification (SyRS), University of Washington ITS4US

Deployment Project, FHWA-JPO-21-884, https://rosap.ntl.bts.gov/view/dot/60129

• Zhang, Yuxiang, Sachin Mehta, and Anat Caspi. "Collecting Sidewalk Network Data at

Scale for Accessible Pedestrian Travel." The 23rd International ACM SIGACCESS

Conference on Computers and Accessibility, 2021

Websites

• What is a Microservices Architecture? Google. https://cloud.google.com/learn/what-is-

microservices-architecture (extracted April 5, 2023)

• Microservice Architecture Style. Microsoft. https://learn.microsoft.com/en-

us/azure/architecture/guide/architecture-styles/microservices (extracted April 5, 2023)

https://rosap.ntl.bts.gov/view/dot/50748/
https://www.fhwa.dot.gov/publications/research/ear/17047/17047.pdf
https://rosap.ntl.bts.gov/view/dot/58675
https://rosap.ntl.bts.gov/view/dot/60129
https://cloud.google.com/learn/what-is-microservices-architecture
https://cloud.google.com/learn/what-is-microservices-architecture
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices

4. Risk Assessment

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

96 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

• Microservices vs. Monolithic Architecture. Atlassian.

https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-

monolith (extracted April 5, 2023)

• IBM Cloud: What is an API? https://www.ibm.com/au-en/topics/api (extracted March 29,

2023)

• Mobility Data Interoperability Principles, https://www.interoperablemobility.org/ (extracted

April 3, 2023)

• The Bezos API Mandate: Amazon’s Manifesto for Externalization, January 19, 2021:

https://nordicapis.com/the-bezos-api-mandate-amazons-manifesto-for-externalization/

• National Bank of Belgium, REST-API Design Guide:

https://github.com/NationalBankBelgium/REST-API-Design-Guide/wiki (extracted July 6,

2022)

• IBM Cloud: What are Microservices? = https://www.ibm.com/topics/microservices

(extracted March 29, 2023)

• Learn Microsoft Azure Documentation: End-to-end computer vision at the edge for

manufacturing: https://learn.microsoft.com/en-us/azure/architecture/reference-

architectures/ai/end-to-end-smart-factory (extracted April 5, 2023)

• Adam Drake, Enough with Microservices, https://adamdrake.com/enough-with-the-

microservices.html (extracted April 3, 2023)

• IView Labs – 9 Key Points to Decide on Microservices Architecture -

https://iviewlabs.medium.com/9-key-points-to-decide-on-microservices-architecture-

c390d9827db7 (extracted April 5, 2023)

• Microservice Architecture – What are microservices? - https://microservices.io/ (extracted

April 5, 2023)

• SHIFT Commerce's Journey: Deconstructing Monolithic Applications into Services -

https://blog.heroku.com/monolithic-applications-into-services (extracted March 29, 2023)

• Clarion Technologies, 5 Best Technologies to Build Microservices Architecture, by

Vinugayathri, https://www.clariontech.com/blog/5-best-technologies-to-build-

microservices-architecture (extracted July 6, 2022)

• JetBrains The State of Developer Ecosystem 2022, Developer Survey Responses

https://www.jetbrains.com/lp/devecosystem-

2021/microservices/#:~:text=Primary%20languages%20among%20microservices%20de

velopers&text=The%203%20most%20popular%20languages,%2C%20and%20Python%

20(25%25). (extracted April 5, 2023)

• "Java Platform, Enterprise Edition (Java EE)". Oracle Technology Network, Oracle,

https://www.oracle.com/java/technologies/java-ee-glance.html (extracted April 5, 2023)

• StackOverflow, Why use CDI in Java EE,

https://stackoverflow.com/questions/13047807/why-use-cdi-in-java-ee (extracted March

29, 2023)

• Spring Software, https://spring.io/ (extracted April 5, 2023)

https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.ibm.com/au-en/topics/api
https://www.interoperablemobility.org/
https://nordicapis.com/the-bezos-api-mandate-amazons-manifesto-for-externalization/
https://github.com/NationalBankBelgium/REST-API-Design-Guide/wiki
https://www.ibm.com/topics/microservices
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/ai/end-to-end-smart-factory
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/ai/end-to-end-smart-factory
https://adamdrake.com/enough-with-the-microservices.html
https://adamdrake.com/enough-with-the-microservices.html
https://iviewlabs.medium.com/9-key-points-to-decide-on-microservices-architecture-c390d9827db7
https://iviewlabs.medium.com/9-key-points-to-decide-on-microservices-architecture-c390d9827db7
https://microservices.io/
https://blog.heroku.com/monolithic-applications-into-services
https://www.clariontech.com/blog/5-best-technologies-to-build-microservices-architecture
https://www.clariontech.com/blog/5-best-technologies-to-build-microservices-architecture
https://www.jetbrains.com/lp/devecosystem-2021/microservices/#:~:text=Primary%20languages%20among%20microservices%20developers&text=The%203%20most%20popular%20languages,%2C%20and%20Python%20(25%25)
https://www.jetbrains.com/lp/devecosystem-2021/microservices/#:~:text=Primary%20languages%20among%20microservices%20developers&text=The%203%20most%20popular%20languages,%2C%20and%20Python%20(25%25)
https://www.jetbrains.com/lp/devecosystem-2021/microservices/#:~:text=Primary%20languages%20among%20microservices%20developers&text=The%203%20most%20popular%20languages,%2C%20and%20Python%20(25%25)
https://www.jetbrains.com/lp/devecosystem-2021/microservices/#:~:text=Primary%20languages%20among%20microservices%20developers&text=The%203%20most%20popular%20languages,%2C%20and%20Python%20(25%25)
https://www.oracle.com/technetwork/java/javaee/overview/index.html
https://www.oracle.com/java/technologies/java-ee-glance.html
https://stackoverflow.com/questions/13047807/why-use-cdi-in-java-ee
https://spring.io/

4. Risk Assessment

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology

Intelligent Transportation System Joint Program Office

Phase 1 Enabling Technology Readiness Assessment – University of Washington, TDEI | 97

• Dropwizard is a Java framework for developing ops-friendly, high-performance, RESTful

web services, https://www.dropwizard.io/en/latest/ (extracted April 5, 2023)

• Restlet Framework: https://restlet.talend.com/ (extracted April 5, 2023)

• Spark - A micro framework for creating web applications in Kotlin and Java 8 with minimal

effort, https://sparkjava.com/ (extracted April 3, 2023)

• Surf Corporation: Microservices with Go: Why they are made for each other and what

results you can get. https://surf.dev/why-golang-with-microservices/ (extracted April 3,

2023)

• New York Times, Gizmo GitHub Site: https://github.com/NYTimes/gizmo (extracted March

29, 2023)

• Go Kit, A toolkit for microservices, https://gokit.io/ (extracted April 5, 2023)

• Go-Micro, GitHub site, https://github.com/go-micro/go-micro (extracted April 5, 2023)

• Koding: Kite, GitHub site, https://github.com/koding/kite (extracted April 5, 2023)

• Tech Target, App Architecture, How viable is it to create a microservice in Python?

https://www.techtarget.com/searchapparchitecture/tip/How-viable-is-it-to-create-

microservices-in-Python (extracted April 5, 2023)

• DZone, Is Python Effective for Microservices Architecture? https://dzone.com/articles/is-

python-effective-for-microservice-architecture (extracted April 5, 2023)

• Analytics Vidhya, An Easy Introduction to Flask Framework for beginners, by Ashray

Saini, September 5, 2022, https://www.analyticsvidhya.com/blog/2021/10/easy-

introduction-to-flask-framework-for-beginners/ (extracted April 5, 2023)

• Flask Development, One Drop At a Time, https://flask.palletsprojects.com/en/2.2.x/

• Phrase Corporation, An I18n Walkthrough for Falcon Web Apps in Python,

https://phrase.com/blog/posts/falcon-python-i18n/ (extracted April 5, 2023)

• Bottle: Python Web Framework, https://bottlepy.org/docs/dev/ (extracted April 5, 2023)

• Nameko 2.12.0 Documentation,

https://nameko.readthedocs.io/en/stable/what_is_nameko.html (extracted April 5, 2023)

• CherryPy – A Minimalist Python Web Framework, https://docs.cherrypy.dev/en/latest/

(extracted April 7, 2023)

• Wikipedia, Node.js, https://en.wikipedia.org/wiki/Node.js (extracted April 7, 2023)

• Mozilla Developer Platform: Express/Node Introduction, https://developer.mozilla.org/en-

US/docs/Learn/Server-side/Express_nodejs/Introduction (extracted April 7, 2023)

• Node: About Node.js, https://nodejs.org/en/about (extracted April 7, 2023)

• Express 4.18.1, Fast, unopinionated, minimalist, web framework for Node.js,

https://expressjs.com/ (extracted April 7, 2023)

• Sails: The MVC framework for Node.js, https://sailsjs.com/ (extracted April 7, 2023)

• Section: Introduction to hapi.js Framework, https://www.section.io/engineering-

education/introduction-to-hapi/ (extracted April 7, 2023)

https://www.dropwizard.io/en/latest/
https://restlet.talend.com/
https://sparkjava.com/
https://surf.dev/why-golang-with-microservices/
https://github.com/NYTimes/gizmo
https://gokit.io/
https://github.com/go-micro/go-micro
https://github.com/koding/kite
https://www.techtarget.com/searchapparchitecture/tip/How-viable-is-it-to-create-microservices-in-Python
https://www.techtarget.com/searchapparchitecture/tip/How-viable-is-it-to-create-microservices-in-Python
https://dzone.com/articles/is-python-effective-for-microservice-architecture
https://dzone.com/articles/is-python-effective-for-microservice-architecture
https://www.analyticsvidhya.com/blog/2021/10/easy-introduction-to-flask-framework-for-beginners/
https://www.analyticsvidhya.com/blog/2021/10/easy-introduction-to-flask-framework-for-beginners/
https://flask.palletsprojects.com/en/2.2.x/
https://phrase.com/blog/posts/falcon-python-i18n/
https://bottlepy.org/docs/dev/
https://nameko.readthedocs.io/en/stable/what_is_nameko.html
https://docs.cherrypy.dev/en/latest/
https://en.wikipedia.org/wiki/Node.js
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_nodejs/Introduction
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_nodejs/Introduction
https://nodejs.org/en/about
https://expressjs.com/
https://sailsjs.com/
https://www.section.io/engineering-education/introduction-to-hapi/
https://www.section.io/engineering-education/introduction-to-hapi/

4. Risk Assessment

U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Intelligent Transportation System Joint Program Office

98 | Phase 1 Enabling Technology Readiness Assessment – University of Washington TDEI

• Jevlix: ASP.NET vs ASP.NET Core. By Vitaliy Ilyukha, https://jelvix.com/blog/asp-net-vs-

asp-net-core (extracted April 7, 2023)

• Microsoft .NET: Microservices with .NET, https://dotnet.microsoft.com/en-

us/apps/aspnet/microservices# (extracted April 10, 2023)

• Learn Microsoft Azure Documentation: Use API gateways in microservices,

https://learn.microsoft.com/en-us/azure/architecture/microservices/design/gateway

(extracted April 5, 2023)

• Cloud Infrastructure Services: Kafka vs Pulsar – What’s the Difference? (Pros and Cons),

by Kamil Wisniowski, September 6, 2022, https://cloudinfrastructureservices.co.uk/kafka-

vs-pulsar-whats-the-difference/

• Digitalis, Apache Kafka vs Apache Pulsar https://digitalis.io/blog/kafka/apache-kafka-vs-

apache-pulsar/ (extracted April 7, 2023)

• Confluent: Kafka vs. Pulsar vs. RabbitMQ: Performance, Architecture, and Features

Compared, https://www.confluent.io/kafka-vs-pulsar/ (extracted April 7, 2023)

• StreamNative, April 7, 2022, Apache Pulsar vs. Apache Kafka 2022 Benchmark

https://streamnative.io/blog/apache-pulsar-vs-apache-kafka-2022-benchmark (extracted

April 7, 2023)

• Macrometa: Kafka Alternatives, Chapter 4 of Event Stream Processing,

https://www.macrometa.com/event-stream-processing/kafka-alternatives (extracted April

7, 2023)

• Ki Waegner: When to choose Redpanda instead of Apache Kafka? https://www.kai-

waehner.de/blog/2022/11/16/when-to-choose-redpanda-instead-of-apache-kafka/

(extracted April 7, 2023)

• Infoworld, Review: Redpanda gives Kafka a run for its money, by Martin Heller, May 25,

2022, https://www.infoworld.com/article/3660628/review-redpanda-gives-kafka-a-run-for-

its-money.html (extracted April 7, 2023)

• Tech with Adrian Bednarz, October 27, 2022, A closer look at Redpanda,

https://techwithadrian.medium.com/a-closer-look-at-redpanda-37015edb0841 (extracted

April 7, 2023)

• Medium.Com: Real-Time Streaming for Mortals: How Redpanda and Materialize Making

It a Reality, October 20, 2021, https://medium.com/event-driven-utopia/real-time-

streaming-for-mortals-how-redpanda-and-materialize-making-it-a-reality-18ac0bdc6f43

(extracted April 7, 2023)

• Source Forge: Apache Kafka vs. Redpanda Comparison Chart,

https://sourceforge.net/software/compare/Apache-Kafka-vs-Redpanda/ (extracted April 7,

2023)

• Appinventiv: 20 Open-Source API Management Platforms to Add to Your Tech Stack,

September 7, 2022, https://appinventiv.com/blog/open-source-api-management-tools/

(extracted April 7, 2023)

https://jelvix.com/blog/asp-net-vs-asp-net-core
https://jelvix.com/blog/asp-net-vs-asp-net-core
https://dotnet.microsoft.com/en-us/apps/aspnet/microservices
https://dotnet.microsoft.com/en-us/apps/aspnet/microservices
https://learn.microsoft.com/en-us/azure/architecture/microservices/design/gateway
https://cloudinfrastructureservices.co.uk/kafka-vs-pulsar-whats-the-difference/
https://cloudinfrastructureservices.co.uk/kafka-vs-pulsar-whats-the-difference/
https://digitalis.io/blog/kafka/apache-kafka-vs-apache-pulsar/
https://digitalis.io/blog/kafka/apache-kafka-vs-apache-pulsar/
https://www.confluent.io/kafka-vs-pulsar/
https://streamnative.io/blog/apache-pulsar-vs-apache-kafka-2022-benchmark
https://www.macrometa.com/event-stream-processing/kafka-alternatives
https://www.kai-waehner.de/blog/2022/11/16/when-to-choose-redpanda-instead-of-apache-kafka/
https://www.kai-waehner.de/blog/2022/11/16/when-to-choose-redpanda-instead-of-apache-kafka/
https://www.infoworld.com/article/3660628/review-redpanda-gives-kafka-a-run-for-its-money.html
https://www.infoworld.com/article/3660628/review-redpanda-gives-kafka-a-run-for-its-money.html
https://techwithadrian.medium.com/a-closer-look-at-redpanda-37015edb0841
https://medium.com/event-driven-utopia/real-time-streaming-for-mortals-how-redpanda-and-materialize-making-it-a-reality-18ac0bdc6f43
https://medium.com/event-driven-utopia/real-time-streaming-for-mortals-how-redpanda-and-materialize-making-it-a-reality-18ac0bdc6f43
https://sourceforge.net/software/compare/Apache-Kafka-vs-Redpanda/
https://appinventiv.com/blog/open-source-api-management-tools/

U.S. Department of Transportation
ITS Joint Program Office-HOIT
1200 New Jersey Avenue, SE

Washington, DC 20590

Toll-Free “Help Line” 866-367-7487
www.its.dot.gov

FHWA-JPO-21-889

http://www.its.dot.gov/

	1 Introduction
	1.1 Intended Audience
	1.2 Project Background
	1.3 Scope
	1.4 Goals and Objectives

	2 Identify Enabling Technologies
	2.1 Technology Readiness Framework
	2.2 Enabling Technologies Inventory
	2.2.1 Microservices Architecture: Enabling Data Collection, Aggregation, Integration and Transformation
	2.2.1.1 Justification for Choosing Microservices Infrastructure to Power the TDE
	2.2.1.2 Key Enabling Technology Components for Microservices: Containers and Orchestration Managers

	2.2.2 Message Streaming and Brokering: Enable Integration of the Data Interoperability Platform
	2.2.2.1 Justification for Choosing Event Bus Messaging
	2.2.2.2 Key Enabling Technology Components for Event Bus

	2.2.3 Application Programming Interfaces and API Layers
	2.2.3.1 Justification for APIs
	2.2.3.2 TDEI Governance in Using APIs

	2.2.4 Intermediary API Gateway Layers Help Integrate APIs
	2.2.4.1 Justification for API Gateway Layers
	2.2.4.2 TDEI Governance in Using API Gateways

	2.3 Integration Architecture
	2.3.1 Component Integration
	2.3.2 Sample Integration and an Image Data-Stream Ingestion Example
	2.3.2.1 Procurement for the Sample Integration
	2.3.2.2 Integration Alternatives and Considerations
	Availability
	Monitoring
	Scalability
	Security
	DevOps

	3 Technology Readiness Level (TRL)
	3.1 TRL Assessment Process
	3.2 Microservice Architecture
	3.2.1 What Questions Remain Gaps in Knowledge for the Team in Implementing and Deploying This Enabling Technology?
	3.2.2 What Are the Evaluation Steps to Follow for Each Question?
	3.2.2.1 TRA Question 1: Choosing a Language and Technology for Microservices
	3.2.2.2 TRA Question 2: Architecting Separate TDEI Microservices, How They Are Decoupled, What Resources They Are Allocated and How They Interact

	3.2.3 How Will You Evaluate the ET TRL in Context of the Conditions for Your Project and Site?
	3.2.4 Which Team Members or Roles Will You Engage in This Investigation?
	3.2.5 How Will You Avoid Potential Bias of Your Group, Which Could Influence TRL Results?
	3.2.6 How Will You Ensure the Data You Use for the TRL Results Are Valid and Current?
	3.2.7 Will Your Process Require the Reevaluation of the TRL Results in a Later Time in the Project to Support Future Phase 2 and 3 Documents?
	3.2.7.1 Sample Microservices – Off-the-Shelf and TDEI-Specific
	3.2.7.2 OTS: Security, Identity, and Authentication Microservices
	3.2.7.3 OTS: Messaging TDEI Data Generators, Providers, Consumers
	3.2.7.4 OTS: Data Consumer and Producer Registries

	3.2.8 TDEI-Developed Microservices
	3.2.8.1 Microservice: Data Validators for All TDEI Data Schemas
	3.2.8.2 Microservice: Data Collection Using Computer Vision Pipelines

	3.3 Using Event Streaming in the Context of Microservices Architecture
	3.3.1 What Questions Remain Gaps in Knowledge for the Team in Implementing and Deploying This Enabling Technology?
	3.3.2 What Are the Evaluation Steps to Follow for Each Question?
	Step 1: Add Producer Logic
	Step 2: Consume the Stream into the Database
	Step 3: Test the Consumer
	Step 4: Determine the Logic Needed in the Microservice
	Step 5: Add, Test, and Consume Event Triggers
	Step 6: Send Events Back from the Microservice
	Step 7: Test Microservice Events
	Step 8: Finally, Remove Deprecated Logic from Monolith

	3.3.3 How Will You Evaluate the ET TRL in the Context of the Conditions for Your Project and Site?
	3.3.4 Which Team Members or Roles Will You Engage in This Investigation
	3.3.5 How Will You Avoid Potential Bias of Your Group, Which Could Influence TRL Results?
	3.3.6 How Will You Ensure the Data You Use for the TRL Results Are Valid and Current?
	3.3.7 Will Your Process Require the Reevaluation of the TRL Results in a Later Time in the Project to Support Future Phase 2 and 3 Documents?

	3.4 Using APIs and API Gateways in the Context of Microservices Architecture
	3.4.1 What Questions Remain Gaps in Knowledge for the Team in Implementing and Deploying This Enabling Technology?
	3.4.2 What Are the Evaluation Steps to Follow for Each Question?
	3.4.3 How Will You Evaluate the ET TRL in Context of the Conditions for Your Project and Site?
	3.4.4 Which Team Members or Roles Will You Engage in This Investigation?
	3.4.5 How Will You Evaluate the ET TRL in Context of the Conditions for Your Project and Site?
	3.4.6 How Will You Avoid Potential Bias of Your Group, Which Could Influence TRL Results?
	3.4.7 How Will You Ensure the Data You Use for the TRL Results Are Valid and Current?
	3.4.8 Will Your Process Require the Reevaluation of the TRL Results in a Later Time in the Project to Support Future Phase 2 and 3 Documents?

	3.5 TRL Ratings for Inventoried Enabling Technologies
	3.5.1 TRA: Microservice Architecture
	3.5.2 TRA: Using Event Streams in the Context of Microservices Architecture
	3.5.3 TRA: Using APIs and API Gateway within the Context of Microservices Architecture

	4 Risk Assessment
	4.1 Assessing Risk
	4.2 Mitigating Risk

